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Abstract

We present a probabilistic model that captures higher-

order co-occurrence statistics for joint visual recognition in

a collection of images and across multiple domains. More

importantly, we predict the structured output across multi-

ple domains by correlating outputs from the multi-classes

Gaussian process classifiers in each individual domain. A

set of correlational tensors is adopted to model the rela-

tionship within a single domain as well as across multiple

domains. This renders it possible to explore a high-order

relational model instead of using just a set of pairwise rela-

tional models. Such tensor relations are based on both the

positive and negative co-occurrences of different categories

of visual instances across multi-domains. This is in contrast

to most previous models where only pair-wise relationships

are explored. We conduct experiments on four challenging

image collections. The experimental results clearly demon-

strate the efficacy of our proposed model.

1. Introduction

The cross-domain visual recognition problem was firstly

explicitly proposed in [33], although many previous works

[29, 3, 40, 4, 36, 37, 38, 7] also implicitly tackled part of

such a problem. In such a problem, multiple visual recog-

nition problems in different semantic domains are simulta-

neously solved through a joint formulation instead of being

handled independently. This is based on the intuition that

the semantics across different domains are associated with

the same visual entity and hence there are intrinsic correla-

tions among them to facilitate the joint inference of all of

these visual semantics. For example, we can interpret each

photo from people, location and event domain, and then em-

ploy the estimated cross-domain correlations to improve the

recognition accuracy in each domain, e.g., face recognition

in people domain.

To better solve cross-domain visual recognition prob-

lems, we propose a probabilistic framework, namely cor-

relational Gaussian processes classifier (CGPC), for joint

visual recognition across a collection of images, and across

multiple domains based on co-occurrence statistics of dif-

ferent instances across multiple domains. This is achieved

by correlating the outputs of the Gaussian process classi-

fiers from each individual domain, and formulate the joint

visual recognition problem as a structured prediction prob-

lem. We choose Gaussian Process because it (1) is a non-

parametric model to handle the linear and nonlinear data,

(2) has a well-founded framework for learning and model

selection, and (3) presents a good interpretation of model

predictions.

We explore both the flip-noise model [23], which is good

at handling label errors around the decision boundaries,

and the robust likelihood model using a back-up mecha-

nism [15], which is expected to be robust when the la-

bel errors occur far away from the decision boundaries,

in the multi-class Gaussian process classifiers (MGPC) for

each individual domain. Hence we obtain two versions of

MGPC, dubbed SMGPC and RMGPC in brief with “S” in-

dicating “standard” and “R” referring to “robust”, respec-

tively. Since both SMGPC and RMGPC have their own

strengths to deal with different labeling noise scenarios, we

determine the better one for our CGPC model based on the

specific task in each individual domain. And then we in-

tegrate outputs from the multi-classes Gaussian process in

each individual domain with a set of relational tensors based

on both the positive and negative, and both the pair-wise and

high-order cross-domain co-occurrence statistics.

Several aspects distinguish our proposed CGPC model

from the existing works [43, 45, 24, 44, 6, 41, 32]. First,

they often directly integrate the relational information with

the input attributes in the Gaussian process prior [6, 43, 45]

or encode relations as random variables conditioned on the

latent function values of entities involved in pairwise rela-

tions [24, 44, 6, 41, 32]. In contrast, our proposed CGPC

model integrates outputs from the multi-classes Gaussian

process in each individual domain with a set of relational

tensors based on the cross-domain co-occurrence statistics.

Second, their models focus on predicting the relational tasks

and it is not clear how these learned relations can be ex-
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ploited to facilitate recognition, which is the focus of our

proposed model.

We shall emphasize that unlike [33] which only explored

positive pair-wise co-occurrence statistics as most existing

works, we make full use of both the positive and negative,

and both the pair-wise and high-order co-occurrence statis-

tics, within a single domain and among the different do-

mains through a unified relational model. The wisdom of

using the negative co-occurrence statistics is that knowing

what is not in a domain might be a very informative clue

about the visual scope of both the current domain and the

other related domains. This kind of negative co-occurrence

statistics has been explored in image retrieval before [18].

To summarize, our contributions are four-folds: (1) we

propose the correlational Gaussian processes classifier for

joint visual recognition in a collection of images across mul-

tiple semantic domains; (2) we adopt a set of tensor parame-

ters in the proposed model to flexibly capture both pairwise

and high-order co-occurrence statistics; (3) we take both the

positive and negative co-occurrence statistics among multi-

domains into account in our model; and (4) we validate our

proposed model on four challenging image collections in-

cluding the SUN 09 dataset [5, 13], which clearly demon-

strate the efficacy of our proposed models.

2. Related work

The related prior work can be roughly split into 2 cat-

egories: Co-occurrence Statistics and Gaussian Processes

for Statistic Relational Learning.

Co-occurrence Statistics. As an important contextual cue,

co-occurrence statistics have facilitated various computer

vision tasks including image segmentation [29, 17, 10], ob-

ject detection [3, 40], object category recognition [4, 36,

42], image annotation and retrieval [11], image and at-

tributes classification [37, 38, 13], path prediction [46] and

video summarization [7]. However, when modeling the

co-occurrences of multiple semantics, the vast majority of

previous works, if not all of them, only modeled the pair-

wise co-occurrence relationship. There were limited num-

ber of work that have attempted to model higher-order co-

occurrence statistics [49, 26, 25, 27, 28], which deserves

more exploration.

Gaussian Processes for Statistic Relational Learning.

Gaussian processes have also been explored for statistic re-

lational learning in several early works [2, 6, 41, 47, 48,

44, 1]. Boyle et al. [2] treated Gaussian processes as white

noise sources convolved with smoothing kernels to han-

dle multiple and coupled outputs. Chu et al. [6] devel-

oped a relational Gaussian process model which uses undi-

rected linkages to incorporate both reciprocal relational in-

formation and input attributes. Yu et al. [47] proposed a

stochastic relational model as a stochastic link-wise process

induced by a tensor interaction of multiple Gaussian pro-

Figure 1: Graphical models of two different forms of our

proposed CGPC model on three domains u, v and s. The

blue parts indicate the independent MGPC (left: SMGPC,

right: RMGPC) in each single domain and the red parts rep-

resent the correlation across multiple domains with the re-

lational model R.

cesses. Yu et al. [48] even proposed approximate Gaussian

processes for modeling the inter-dependencies of edges in

directed, undirected and bipartite networks.

Later, Xu et al. [43] proposed a multi-relational Gaussian

process model to deal with an arbitrary number of relations

and entity types in a single domain. Xu et al. [45] also gen-

eralized the model of Chu et al. [6] to a multi-way analysis

model, namely InfTucker, by capturing nonlinear interac-

tions among different tensor models. Nickel et al. [39] pro-

poses a relational learning approach based on the factoriza-

tion of a three-way tensor for multi-relational data. In con-

trast to these works which focus on covariance function to

model the interactions among multiple Gaussian processes,

tensors in our proposed CGPC model are intended to model

the correlations among the outputs of MGPC from different

domains. Our CGPC model also differs from existing trans-

fer learning methods with deep Gaussian Processes [22],

which focuses on the knowledge tranfer from a source deep

GP to a target deep GP.

3. Formulation

We assume D semantic domains Ω = {d|d =
1, . . . , D}. For each domain d, there are Nd images. Xd,

Sd, Yd indicate the set of observed features, the set of

random variables as soft labels and the set of true labels,

respectively, corresponding to such Nd visual instances.

More specifically, for each instance xdi in Xd, its corre-

sponding random variable sdi is used to jointly infer its true

label ydi with relational models. For notation simplifica-

tion, we denote Xd = {xdi|i = 1, . . . , Nd}, Sd = {sdi|i =
1, . . . , Nd}, Yd = {ydi|i = 1, . . . , Nd}, X = {Xd|d ∈
Ω}, S = {Sd|d ∈ Ω}, and Y = {Yd|d ∈ Ω}.

We use a set of interaction tensors R = {Rc|c ∈ C},
where c is a combination of domains that Rc correlates and

C is a set of such combinations, to represent the set of cross-

domain relational models. For each Rc, depending on how
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many domains we are modeling, it can conveniently model

co-occurrence relations of arbitrary order. For example, if

the relational model couples two domains, then Rc is a ma-

trix. If the relational model models three domains, then Rc

is a order-3 tensor. Figure 1 is one example to show our

proposed CGPC model over a collection of images on three

domains u, v and s. As illustrated in Figure 1, the con-

ditional joint probability of the CGPC model is defined as

p(S,Y,R|X) ∝ p(R)p(Y|R,S,Θ)
∏

d∈Ω

p(Sd|Xd), (1)

where Θ = {Θd|d ∈ Ω} and Θd is the hyperparame-

ter associated with a specific domain d to deal with la-

beling errors in MGPC, i.e., Θd = ǫd for SMGPC and

Θd = {αd, βd, ρd, zd} for RMGPC (See details in Sec 3.1).

p(Y|R,S,Θ) is conditioned on both the relational model

R and random variables S, and p(Sd|Xd) is dependent on

Xd.

In order to ease the learning and inference, we re-

lax the conditional dependence by p(Y|R,S,Θ) ≈
1

Z(R,S)p(Y|R)p(Y|S,Θ) (where Z(R,S) is normalized

constant) and p(Y|S,Θ) =
∏

d∈Ω

p(Yd|Sd,Θd). We take

this relaxation to make the inference tractable. Although

p(Y|S) and p(Y|R) seem conditionally independent, the

constant Z(R,S) of the joint probability in this approxima-

tion still depends on R and S, and therefore couples1 the

relational model with the classifier soft score. Hence, this

treatment is reasonable and we obtain

p(S,Y,R|X) ∝ p(R)p(Y|R)
∏

d∈Ω

p(Yd|Sd,Θd)p(Sd|Xd),(2)

where the second term p(Y|R) defines the prior probability

based on the relational statistical tensor R, which encodes

both positive and negative co-occurrence relations and cor-

relates the outputs from the different domains in Ω. And

the last two terms p(Yd|Sd,Θd)p(Sd|Xd) associates with

the joint probability from MGPC in the single domain d,

which can be further decomposed depending on the specific

Gaussian process model adopted in each individual domain.

More details about the terms will be described in the sub-

sequent subsections. It worths mentioning that other classi-

fiers can also be leveraged, but that is not we are focusing

in this paper.

To clarify, we emphasize multiple domains to fully ex-

plore domain specific feature representations for recogni-

tion. Analogously, our method can be applied to different

classes as different domains, where we regard class specific

feature as the domain specific feature representation. Those

classes sharing the same feature can be clustered to the same

domain.

1The “coupling” here means that Z(R,S) is the normalization con-

stant covering both p(Y|R) and p(Y|S,Θ), and it cannot be decom-

posed.

3.1. p(Yd|Sd,Θd)p(Sd|Xd) from the MGPC

For each individual domain d, We select one MGPC

from its two versions, i.e., SMGPC and RMGPC, of which

the difference is reflected in their treatment of labeling er-

rors. Assuming there are ld categories in domain d and

Sd = {Sk
d|k = 1, . . . , ld}, then the Gaussian process prior

of the overall function value Sk
d is defined as p(Sk

d|Xd) =
N(0,Kk

d), where Kk
d denotes the Nd ×Nd covariance ma-

trix whose ij-th entry is computed with the corresponding

covariance function associated with the category k.

We proceed to introduce these two MGPCs.

3.1.1 SMGPC

By reducing the multi-classes classification to binary cases,

we can denote Yd = {Yk
d |k = 1, . . . , ld}, where Yk

d =
{ykdi|i = 1, . . . , Nd} is a set of binary labels. ykdi is 1 if

the instance xi belongs to category k and 0 otherwise in

domain d. Then p(Yd|Sd,Θd)p(Sd|Xd) from SMGPC in

each individual domain d associated with each category k

can be further decomposed as

p(Yd|Sd,Θd)p(Sd|Xd) ∝
∏

k

p(Sk
d|Xd)

Nd
∏

i=1

p(ykdi|s
k
di, εd),(3)

where Θd denotes εd and the conditional likelihood model

p(ykdi|s
k
di, εd) is defined as a flip noise model [23], i.e.,

p(ykdi|s
k
di, εd) = εdH(ykdis

k
di) + (1− εd)H(−ykdis

k
di), (4)

where H(x) = 1 if x > 0 and H(x) = 0 otherwise. In

other words, the a posteriori estimation of ykdi takes the sign

of the predicted soft label skdi with probability εd(0 ≤ εd ≤
1), and hence εd can be used to model the global labeling

error rate in domain d, which can be estimated by the EP-

EM algorithm [16, 34, 35].

3.1.2 RMGPC

Different from SMGPC, p(Yd|Sd,Θd)p(Sd|Xd) from

RMGPC for each individual domain d is defined as

p(Yd|Sd,Θd)p(Sd|Xd)

∝ p(Sd|Xd)p(ρd)p(zd|ρd)

Nd
∏

i=1

p(ydi|sdi, zdi),
(5)

where ρd is the prior fraction of training instances expected

to be outliers, and zd = {zd1, . . . , zdNd
} is a set of binary

latent variable for each visual instance to indicate whether

s
ydi

di ≥ skdi for any k 6= ydi (zdi = 0) or not (zdi = 1). Note

that s
ydi

di here denotes the latent score of instance xi belong

to the ground-truth category ydi in domain d.

p(ydi|sdi, zdi) is a back-up mechanism to handle label

noises and is defined as

p(ydi|sdi, zdi) =





∏

k 6=ydi

H(sydi

di − skdi)





1−zdi
[

1

ld

]zdi

. (6)
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Note that the first term directly depends on the accuracy of

s
ydi

di . In particular, it takes value 1 when the corresponding

instance is correctly classified and 0 otherwise. RMGPC is

expected to be robust when the observed data contain la-

beling errors far from the decision boundaries, because the

likelihood function described in Eq. 6 considers only the

total number of prediction errors made by s
ydi

di , rather than

the distance of these errors to the decision boundary.

p(zd|ρd) is defined as a factorizing multivariate

Bernoulli distribution

p(zd|ρd) = Bern(zd|ρd) =

Nd
∏

i=1

ρzdid (1− ρd)
1−zdi . (7)

And the prior for ρd is set to be a conjugate beta distri-

bution, i.e.,

p(ρd) = Beta(ρd|αd, βd) =
ραd−1
d (1− ρd)

βd−1

B(αd, βd)
, (8)

where B(·, ·) is the the beta function, and both αd and βd

are hyper-parameters as part of Θd in Eq. 5. We suggest

αd = 1 and βd = 9.

Discussion: SMGPC is good at dealing with the addi-

tive Gaussian noises near the decision boundaries, while

RMGPC is more robust to handle the scenario when the

labeling errors are far from the decision boundaries. This

suggests that we should determine which one of them to be

used for each individual domain based on the specific task.

3.2. p(Y|R) to Model Co­occurrences

Next, we define p(Y|R) with the tensor-based relational

model R, a complicated combined relational model con-

sisted of a set of different relational models Rc, where

c is a combination of co-occurring domains denoted as

d1 ∼ . . . ∼ d|c| (|c| is the cardinality of c). We let j be a set

of instance indices of a co-occurrence associated with the

corresponding domains c denoted as j1 ∼ . . . ∼ j|c|, and

then Φ(Yc
j |R

c) represents the relational potential to mea-

sure the co-occurring labels Yc
j = {ydkjk |dk ∈ c, jk ∈ j}

with the relational model Rc. Denoting C to be a set of c

associated with R and O(c) to be a set of j covering all

co-occurrences on c, we define

p(Y|R) ∝ exp







∑

c∈C

∑

j∈O(c)

αcΦ(Y
c
j |R

c)







, (9)

where αc is the parameter associated with the relational

model Rc and its value can be determined by 5-fold cross-

validation in the range [0.01, 1.0].

To clarify, the relational potential Φ(Yc
j |R

c) can cover

the relational models both within a single domain and across

multiple domains. In particular, a pairwise relational model

associated with any two instances co-occurring within a sin-

gle domain can be viewed as a particular cross-domain rela-

tional that couples the two same domains. In this paper, the

relational model Rc is pairwise or high-order co-occurring

coefficients among labels Yc
j . If Rc is based on only the

positive co-occurrences, then Φ(Yc
j |R

c) can be defined as

Φ(Yc
j |R

c)
.
=

∑

yd1
∼...∼yd|c|

Rc(yd1
, . . . , yd|c|

)

× I(yd1
= yd1j1) . . . I(yd|c|

= yd|c|j|c|).

Intuitively, larger value of the tensor element

Rc(yd1
, . . . , yd|c|

) indicates that the combination of

labels yd1
∼ . . . ∼ yd|c|

co-occur more frequently, and will

encourage ydkik to be assigned ydk
for any dk ∈ c. Hence,

maximizing Φ(Yc
j |R

c) should lead to the labels that are

consistent with the relation.

However, knowing what is not related to the label in one

domain might also be a very informative clue about the vi-

sual recognition in both the current domain and the other

related domains. Hence, besides Rc
+ denoting the rela-

tional model based on all the positive co-occurrences, we

also consider the other relational models, i.e., (1) Rc
− based

on all the negative co-occurrences (completely 6≡ Yc
j ), and

(2) Rc1c2

+− based on the partly positive and partly negative

co-occurrences, where c1 is the part of domains in which

the labels are positive (≡ Yc1

j ) and c2 is the other part of

domains where the labels are negative (6≡ Yc2

j ) in the co-

occurrences. Note that Yc
j

.
= Yc1

j ∼ Y
c2

j means Yc1

j and

Yc2

j occur in cross-domain c positively. We believe both

Rc
− and Rc1c2

+− are beneficial to estimate the underlying true

Rc in the entire data distribution. Therefore, based on both

the positive and negative co-occurrences, the Rc can be de-

fined as the weighted sum of these relational tensors, i.e.,

Rc = wc
+R

c
+ + wc

−R
c
− −

∑

c1,c2

wc1c2

+− Rc1c2

+− , (10)

where the weights wc
+, wc

− and wc1c2

+− are in the range [0, 1]
and can be learned from the observed data or by cross-

validation. The reason why we set the positive sign on

Rc
+ and Rc

− in Eq. 10 is that we expect Rc
+ and Rc

−

to be able to reflect the underlying true co-occurring re-

lationship and hence better model the probability of co-

occurrences. This has been verified by our experimental

observations. For simplification, we even can set them as

wc
+ = 1, wc

− = 1∏

dk∈c

(ldk−1) and wc1c2

+− = 1∏

dk∈c2

(ldk−1) .

The weights are set in such a way that we rely a bit more

on the positive co-occurrences because they may be more

reliably estimated from the data.

3.3. Relational Model Prior p(R)

To avoid over-fitting, we need to regularize the relational

model R. Ideally, R is able to capture truly stable relations

rather than those only due to the occasional co-occurrences.

We impose L1 regularization on R to enforce sparsity and

learn stable relations to rule out the influence of the non-

stable co-occurrences. To avoid some elements in R be-

coming too large so that instances in small-size classes are

121



incorrectly classified when the calss sizes are imblanced,

we also incorporate L2 regularization on R. Such a regu-

larization with L1 and L2 norm is embedded into the prior

probability of R, i.e.,

p(R) ∝ exp {−β1‖ R ‖1 − β2‖ R ‖2}, (11)

where β1 and β2 are adjusting weights whose values are de-

termined by 5-fold cross-validation in the range [0.01, 1.0].

4. Joint Inference and Learning

Inspired by the ideas in [33], we derive a variational

EM algorithm with the goal to jointly infer the labels of

instances and estimate the relational model. With a few

labels in different domains, denoted as YL = {YdL|d ∈
Ω}, provided in advance by user, and any valid distribu-

tion q(YU ) of the unknown labels YU = {YdU |d ∈ Ω}
based on both the output probabilities from the MGPC and

the current relational model R and the observed feature

X = {XdL,XdU |d ∈ Ω}, we can obtain a lower bound

J(R, q) = Eq {log p(YU ,YL|R)}

+Eq

{

∑

d∈Ω

log p(YdU |YdL,Xd,Θd)

}

+ log p(R) +Hq(q(YU )),

(12)

where Hq(q(YU )) is the entropy of q(YU ) and

p(YdU |YdL,Xd,Θd) =
∏

xdu∈XdU

p(ydu|XdL,YdL,xdu,Θd),

where p(ydu|XdL,YdL,xdu,Θd) is the output for a unla-

beled instance xdu from the MGPC. It is well known that

Eq. 12 holds when q(YU ) = p(YU |YL,R,X), i.e., maxi-

mizing the lower bound J(R, q) with respect to both R and

q will not only provide us with an estimate of the relational

model R but also the posterior distribution over YU . The

EM algorithm can be described by the two iterative steps:

• E-step: Infer the distribution of YU based on both

the extracted features and the current relational model

R̂(t) by q̂(t+1) ← argmax
q

J(R̂(t), q).

• M-step: Estimate and update the relational model

using the labels provided by user and the hidden

labels inferred in previous iteration by R̂(t+1) ←
argmax

R
J(R, q̂(t+1)).

We consider all the possible combinations using both the

known labels and the predicted labels. It is worth mention-

ing that each component of Rc in Eq. 10 is estimated in the

M-step. Once the EM algorithm converges, it outputs an

estimate of the posterior probability of each label for each

instance.

Discussion: Regarding the relationship between learning

MGPC and learning J(R,Y), the hyper-parameters are fit

before learning J(R,Y). And only R and Y are iteratively

estimated using a variation EM algorithm.

5. Experiments

Our experiments are first carried out on three image col-

lections, i.e., the E-Album [8] and the G-Album [12], and a

newly published VP dataset [21], in which we measure the

performance with Rank-1 recognition accuracy. We also

extend the experiments to a larger dataset SUN 09 [5, 13],

where multiple concepts co-occur in the images and multi-

ple domains can come from a random split of the concepts.

5.1. Experiments on the E­Album and the G­Album

The E-Album is consisted of 108 photos taken at 21

locations in 19 events, and 15 different people in 145 de-

tected faces. The G-Album has 312 photos taken at 141

locations in 117 events, 13 different people in 441 detected

faces. We conduct experiments on three domains: people,

location and event. The feature we use for people domain is

the 100-dimensional feature with a probabilistic elastic part

(PEP) representation [30] extracted from detected faces af-

ter resizing them to 150 pixels by 150 pixels. For the lo-

cation domain, we extract 512-dimensional GIST feature

from each photo. For the event domain,we use a vector of

374 attributes detector probabilities to be a 374-dimensional

attribute feature by adopting the VIREO-374 SVM models

provided in [19, 20].

For each domain, we adopt the RBF kernel because it

is a squared exponential kernel and in general more flexi-

ble than linear or polynomial kernels so that we can model

a whole lot more functions with its functional space. As

for the similarity or distance measurements, we evaluate

the Earth-mover’s distance with L1 norm, the Earth-mover’s

distance with L2 norm, the L1 distance, the L2 distance, and

the similarity score from the Joint-Bayesian classifier [31].

We name these 5 different dense RBF kernels as EMDL1-K,

EMDL2-K, L1-K, L2-K and JB-K. In addition, we evaluate

our proposed algorithm with the original kernel, which we

call Lin-Kernel, used in [33] and provided by the authors

of [33]. Note that Lin-Kernel is sparse because the nonzero

elements in the kernel matrix only occupy a very small per-

centage (ranging between 2% and 5%).

It worths mentioning here that we use the same setting

of pre-labeled subset adopted in [33] for convenience of

comparison. We firstly focus on face recognition to show

the efficacy of relational models and then evaluate the other

recognition tasks on and across all domains.

5.1.1 Visualization of relational models

To better understand the sparsity of relational models in

Section 3.3, we visualize the four above-mentioned rela-

tional models on the E-Album, as demonstrated in Figure 2.

Since PP, PL and PE are pairwise relational models, we

adopt colormap to plot the matrixes as in Figure 2a, 2b

and 2c. The observations show that only a few number of

elements are nonzero. This indicates that pairwise relational
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Figure 2: Visualization of 4 different relational models on the E-Album. Note that 0-14, 0-20 and 0-18 are the label IDs for

People, Location and Event domains, respectively. And for (d), the zero-valued elements are not plotted.

Table 1: Face recognition performance with 4 relational

models and 6 kernels on the E-Album.(unit: %)

EMDL1-K EMDL2-K L1-K L2-K Lin-Kernel JB-K

P-only 35.71 72.22 67.46 71.43 73.81 86.51

PP+ 66.67 73.81 71.43 72.22 75.40 88.89

PP± 69.84 75.40 73.81 73.02 76.19 90.48

PL+ 76.19 86.51 85.71 86.51 87.30 95.24

PL± 79.37 92.06 90.48 90.48 88.89 96.83

PE+ 76.19 87.30 85.71 86.51 89.68 95.24

PE± 79.37 92.06 90.48 91.27 91.47 96.83

PLE+ 72.22 86.51 85.71 86.51 87.30 95.24

PLE± 76.98 87.30 86.51 87.30 89.68 96.83

Table 2: Face recognition performance with 4 relational

models and 6 kernels on the G-Album.(unit: %)

EMDL1-K EMDL2-K L1-K L2-K Lin-Kernel JB-K

P-only 53.57 76.28 76.53 75.51 76.02 82.65

PP+ 70.66 76.53 76.78 77.04 77.30 82.91

PP± 72.70 77.81 78.06 78.31 77.81 84.18

PL+ 68.37 80.10 81.38 80.61 80.61 83.93

PL± 69.90 82.14 83.67 83.16 81.63 84.18

PE+ 70.92 81.63 82.65 81.89 81.89 86.22

PE± 72.70 84.43 84.44 84.69 82.91 88.78

PLE+ 72.70 81.91 84.69 82.40 81.89 85.46

PLE± 74.23 82.91 84.95 83.42 82.40 86.48

models in our proposed framework have a good property of

sparsity as we expected. As for the high-order relational

model PLE, we plot the elements whose values are nonzero

in Figure 2d. It is easy to observe that the high-order rela-

tional model PLE is also sparse.

5.1.2 Efficacy of Positive and Negative Co-occurrences

To evaluate the efficacy of the relational models based

on both the positive and negative co-occurrences (marked

with the suffix “±”), we conduct experiments with 3 pair-

wise relational models, i.e., People-People relational model

(PP) within the people domain, People-Location relational

model (PL) cross the people and location domains, People-

Event relational model (PE) cross the people and event do-

mains, and the high-order People-Location-Event relational

model (PLE) cross all these 3 domains, on the two albums.

For each relational model, we compare its performance with

two baselines: the performance without any relational mod-

els is called P-only, and the performance with the same re-

lational model but using the positive co-occurrences only

(marked with the suffix “+”).

We evaluate these 4 relational models on 6 different ker-

nels. For each individual domain with specific kernel on the

two albums, the selection of MGPCs for our CGPC model

is dependent on the experimental performance of SMGPC

and RMGPC.

Here we summarize the results in Table 1 and 2. It can

be seen that: (1) with any relational model, the recognition

accuracy has been consistently improved when compared

to P-only; (2) the relational model based on both the pos-

itive and negative co-occurrences always performs better

than the corresponding relational model using the positive

co-occurrences only. Apparently, exploring the negative co-

occurrences together enables the better performance.

As observed, the performance of PLE alone does not

necessarily perform better than that of PE. This can be ex-

plained by the fact that, in general, compared with pair-

wise relational model, high-order co-occurrence statistics

need more observed examples to obtain a reliable estima-

tion since they correlates more number of domains. How-

ever, we will show in the next section that combining PLE

with PP and PE together will provide another boost since

they are complementary. (Please see Section 5.1.3)

5.1.3 Comparison with the state-of-the-art

We compare our proposed CGPC with Lin’s cross-domain

learning method [33], denoted as “Lin-CDL”, on both the

E-Album and the G-Album for face recognition, location

recognition and event recognition across 3 domains. To

our best acknowledge, [33] is the only work that also ex-

plores cross-domain recognition so that we take it as the

baseline. To guarantee that the comparison is fair, for each

individual domain, we use two kernels, i.e., the sparse ker-

nel Lin-Kernel and the dense kernel JB-K, and distinguish

them with the prefixes “Ks-” and “Kd-”, respectively. The

suffixes “+” and “±” are the same as in Section 5.1.2.

To clarify, the high recognition performance of our pro-

posed CGPC model comes from two parts: (1) the output of

MGPC associated with the specific recognition task in the

domain d; and (2) the cross relational models with the aids

of the other domains. In this paper, we use S-CGPC and R-

CGPC to emphasize the selection of MGPC (i.e., SMGPC

and RMGPC, respectively) for the domain associated with
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Table 3: Performance comparison of face recognition on the

E-Album.(unit: %)

P-only PP PE PLE PP+PE PP+PE+PLE

Ks-Lin 72.22 73.02 88.10 – 96.83 –

Kd-Lin 38.89 46.03 72.22 – 90.48 –

Ks-S+ 73.81 74.60 88.89 86.51 96.83 96.83

Ks-S± 73.81 75.40 89.68 87.30 96.83 97.62

Kd-S+ 84.92 86.89 94.44 93.65 96.83 97.62

Kd-S± 84.92 89.68 95.24 94.44 97.62 97.62

Ks-R+ 73.81 75.40 89.68 87.30 96.83 97.62

Ks-R± 73.81 76.19 91.47 89.68 97.62 97.62

Kd-R+ 86.51 88.89 95.24 95.24 97.62 97.62

Kd-R± 86.51 90.48 96.83 96.83 97.62 98.41

the recognition task. For example, when we evaluate face

recognition in the people domain with R-CGPC, the out-

put of people domain is obtained from RMGPC. To shorten

names from Table 3 to Table 8, we use “Lin”, “S” and “R”

to indicate Lin-CDL, S-CGPC and R-CGPC, respectively.

Face recognition Besides the single pairwise relational

models mentioned above, we also combine PP and PE to-

gether to form a combined relational model PP+PE. What’s

more, we even include PLE into PP+PE to form a more

complex relational model PP+PE+PLE.

The observations in Table 3 and 4 show that for both S-

CGPC and R-CGPC, (1) they perform well with both the

sparse and dense kernels, while Lin-CDL only works well

when using the sparse kernel; (2) they always outperform

Lin-CDL based on the same kernel, whether using the re-

lational models based on both the positive and negative co-

occurrences, or using the relational models with the posi-

tive co-occurrences only ; (3) again, the relational models

based on both the positive and negative co-occurrences are

always better than those using the positive co-occurrences

only, whether with the sparse or dense kernel; (4) they can

model the high-order relational model PLE and incorporat-

ing it can help improve the final recognition accuracy; (5)

the combined relational models are better than the single re-

lational models, which shows that the relational models are

complementary to each other; (6) R-CGPC performs better

than S-CGPC no matter using the sparse or dense kernel on

both the two albums or not; and (7) with the dense kernel,

our proposed algorithm R-CGPC can improve the recogni-

tion accuracy by about 2% on the E-Album and 7% on the

G-Album when compared with the best results in [33].

Also, it is worth paying attention to the compari-

son between the PP+PE’s results and the corresponding

PP+PE+PLE’s results on the E-Album, and the recognition

accuracy 96.83%, 97.62% and 98.41% mean that only 4, 3

and 2 testing examples are misclassified, respectively. Al-

though the gain is small, considering that these are the really

difficult visual instances, the improvement from 96.83% to

97.62% and from 97.62% to 98.41% still confirm the power

of incorporating the high-order relational model PLE.

Location and event recognition We also run experi-

Table 4: Performance comparison of face recognition on the

G-Album. (unit: %)

P-only PP PE PLE PP+PE PP+PE+PLE

Ks-Lin 73.72 74.74 79.85 – 85.46 –

Kd-Lin 40.56 41.33 67.09 – 75.26 –

Ks-S+ 74.23 75.26 81.12 80.88 86.99 88.27

Ks-S± 74.23 76.78 81.89 82.14 87.76 89.03

Kd-S+ 81.89 82.65 84.69 84.44 88.52 89.54

Kd-S± 81.89 83.16 86.73 85.45 89.80 90.56

Ks-R+ 76.02 77.30 81.89 81.89 87.50 89.03

Ks-R± 76.02 77.81 82.91 82.40 88.78 90.05

Kd-R+ 82.65 82.91 86.22 85.46 89.03 90.31

Kd-R± 82.65 84.18 88.78 86.48 90.56 92.09

Table 5: Performance comparison of location recognition

on the E-Album (left) and the G-Album (right). (unit: %)

L-only LE PLE LE+PLE L-only LE PLE LE+PLE

Kd-Lin 62.82 91.02 – – 23.92 80.36 – –

Kd-S+ 83.33 92.30 87.17 97.43 27.61 82.21 76.07 85.27

Kd-S± 83.33 96.15 89.74 98.87 27.61 85.89 80.98 87.12

Kd-R+ 84.61 94.87 91.03 98.87 29.45 84.66 79.14 87.73

Kd-R± 84.61 98.71 93.59 100.00 29.45 87.12 83.43 89.57

Table 6: Performance comparison of event recognition on

the E-Album (left) and the G-Album (right). (unit: %)

E-only LE PLE LE+PLE E-only LE PLE LE+PLE

Kd-Lin 26.42 60.37 – – 9.15 41.54 – –

Kd-S+ 43.40 62.26 58.49 67.92 11.27 52.11 48.59 55.63

Kd-S± 43.40 66.04 60.38 69.81 11.27 56.33 50.70 59.15

Kd-R+ 47.17 67.92 64.15 69.81 12.68 54.92 49.30 58.45

Kd-R± 47.17 69.81 66.04 71.69 12.68 57.74 51.41 60.56

ments to evaluate the performances of location recognition

and event recognition on the other two domains. To make it

simple, we only evaluate the relational model LE, the high-

order relational model PLE, and the combined relational

model LE+PLE. Similarly, “L-only” and “E-only” denote

the baseline without any relational models in location and

event recognition, respectively.

As shown in Table 5 and Table 6, the efficacy of our pro-

posed approach in boosting both the location recognition

accuracy and the event recognition accuracy is largely con-

sistent with the claims in the face recognition.

5.2. Experiments on the VP dataset

The VP dataset [21] contains 1124 images (811 images

for training and 313 images for testing) of 8 politicians. In

this paper, we use 3 domains, i.e., people, gesture and scene,

with the task to improve the performance of face recogni-

tion, gesture recognition and scene recognition with the aid

of the cross-domain relational models. Since the task is dif-

ferent from [21], we only use the shared original images and

the labels for the people domain and collect the labels for

the other two domains by ourselves. In the gesture domain,

we define 64 different kinds of labels, e.g., hand-waving,

handshake, finger-pointing, touching-head, hugging, and so
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Table 7: Performance comparison of face recognition on the

VP dataset.(unit: %)
P-only PG PS PGS PG+PS PG+PS+PGS

Kd-Lin 18.53 24.60 34.50 – 35.82 –

Kd-S+ 65.18 65.50 65.81 65.50 66.77 68.69

Kd-S± 65.18 65.81 66.45 66.13 67.41 69.01

Kd-R+ 66.13 66.45 66.77 66.45 67.73 69.33

Kd-R± 66.13 67.09 67.41 67.41 68.37 70.92

on. In the scene domain, we define 35 kinds of labels like

dark-background and national-flag. We use the same feature

for peole domain as in Section 5.1. For the scene domain,

we use a 374-dimensional attribute feature by adopting the

VIREO-374 SVM models provided in [19, 20]. For ges-

ture domain, we adopt 3-level spatial pyramids with densely

sampled SIFT features encoded by the dictionary learned by

K-means clustering to obtain a 1024-dimensional feature,

which has been proposed for action recognition [9].

We compare our CGPC with Lin-CDL with the dense

kernel JB-K (indicated with the prefix “Kd-” as in Section

5.1.3) for face recognition, gesture recognition and scene

recognition across 3 domains on the VP dataset.

Face recognition Considering that there are few people-

people co-occurrences in this dataset similar to the E-

Album and the G-Album, we explore the following cross-

domain models: People-Gesture relational model (PG),

People-Scene relational model (PS), People-Gesture-Scene

relational model (PGS), and the combined relational model

PG+PS and PG+PS+PGS.

The results are summarized in Table 7. Not surpris-

ingly, with the combined relational models PG+PS+PGS,

both our S-CGPC and R-CPGC obtain the best recognition

performance. Note that PG+PS+PGS achieves better recog-

nition accuracy than PG+PS, which demonstrates that PGS

is complementary to PG+PS and cannot be replaced with

PG+PS directly.

Gesture and scene recognition We evaluate gesture

recognition and scene recognition on the VP dataset. We

evaluate the performances with the single relational model

GS, PGS, and the combined relational model GS+PGS. “G-

only” and “S-only” indicate the baselines without any rela-

tional models in the gesture recognition task and the scene

recognition task, respectively.

We present the result of gesture recognition and scene

recognition in Table 8, As expected, both the relational

models GS and PGS can boost the gesture recognition ac-

curacy and the scene recognition accuracy, and PGS still

shows its complementary advantage over GS so that the

combined relational model GS+PGS can reach the better

performance for both the gesture and scene recognition task.

5.3. Experiments on the SUN 09 dataset

The SUN 09 dataset [5] is full of contextual informa-

tion. It contains 12,000 annotated images covering a large

Table 8: Performance comparison of gesture (left) and

scene recognition (right) on the VP dataset.(unit: %)

G-only GS PGS GS+PGS S-only GS PGS GS+PGS

Kd-Lin 13.42 30.35 – – 20.45 46.01 – –

Kd-S+ 25.56 38.34 36.10 42.49 38.02 51.44 49.84 55.59

Kd-S± 25.56 41.21 39.29 44.72 38.02 54.31 51.12 58.15

Kd-R+ 26.84 39.62 38.66 43.13 39.61 53.67 50.16 57.50

Kd-R± 26.84 43.13 41.85 46.96 39.61 57.19 53.04 60.38

number of indoor and outdoor scene categories with >200

object categories and 152,000 annotated object instances.

To clarify, we emphasize multiple domains to fully ex-

plore domain specific feature representations for recogni-

tion. Analogously, our method can be applied to different

classes as different domains, where we regard class specific

feature as the domain specific feature representation. Those

classes sharing the same feature can be clustered to the same

domain. To verify such claims, we run experiments on the

SUN 09 dataset by randomly dividing it into 3 domains of

which each domain covers around 35 concepts (107 con-

cepts used in total). Using the gist features as in HCon-

text [5] for each domain, we achieve 41.4% correctness for

top-3 presence prediction, while that of HContext is 38%.

6. Discussion and Conclusion

We propose a correlational Gaussian processes for cross-

domain visual recognition with the relational models based

on both the positive and negative co-occurrence statistics.

Our proposed algorithm flexibly explores both the pairwise

and high-order relational models. We evaluate the perfor-

mance on each individual domain to demonstrate that our

learnt relations can indeed improve the performance of each

individual domain. It works well for all individual domains.

Also, there is a trade-off between the runtime and the recog-

nition performance. i.e., if we incorporate more relations,

then we can achieve the better performance with longer run-

time, and vice versa.

As verified by the experiments, our proposed method

achieves the best recognition accuracy compared to the

state-of-the-art. Also, any concepts sharing the same fea-

ture representation can be viewed as a domain. Hence our

model can be applied to the co-occurring concepts within

a single domain and across multiple domains. Our future

work includes further developing the inference/learning al-

gorithms to make it more efficient and scalable [14], and ex-

tending our CGPC framework to deep learning model with

large-scale cross-domain datasets we are still collecting.
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