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Abstract

Methods for automated 3D urban modeling typically re-

sult in very dense point clouds or surface meshes derived

from either overhead lidar or imagery (multiview stereo).

Such models are very large and have no semantic separa-

tion of individual structures (i.e. buildings, bridges) from

the terrain. Furthermore, such dense models often ap-

pear “melted” and do not capture sharp edges. This paper

demonstrates an end-to-end system for segmenting build-

ings and bridges from terrain and estimating simple, low

polygon, textured mesh models of these structures. The ap-

proach uses multiview-stereo satellite imagery as a starting

point, but this work focuses on segmentation methods and

regularized 3D surface extraction. Our work is evaluated

on the IARPA CORE3D public data set using the associ-

ated ground truth and metrics. A web-based application

deployed on AWS runs the algorithms and provides visual-

ization of the results. Both the algorithms and web applica-

tion are provided as open source software as a resource for

further research or product development.

1. Introduction

Accurate 3D geospatial mesh models of urban areas have

uses in a variety of applications including navigation and

city planning. There are several technologies for obtaining

these 3D models. 3D models scanned with airborne lidar

are accurate and precise, but collection productivity is lim-

ited by the required low flight height and narrow swath. Al-

though recent Geiger-mode lidar can acquire data at a much

higher productivity, its high noise and low penetration ca-

pability prevent it from being used for routine production at

this time [35]. Moreover, lidar acquisition needs separate

optical sensors to collect natural, true color images over the

ground. The use of multiple sensors, operated either simul-

taneously or independently, can cause additional difficulties
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Figure 1. From satellite images and image-derived point clouds,

our approach segments and models buildings (grey), bridges

(cyan), and terrain (green) before texturing from the imagery.

in data processing, such as precise data co-registration and

handling the inconsistency between resolutions.

Multiview satellite images provide another means for re-

constructing either point or surface models with photogram-

metry. Compared to airborne lidar and images, satellite im-

ages can cover much larger areas from a highly stable plat-

form. The high agility of modern satellite platforms and

sensors enables multiview coverage in a targeted area within

a short period of time. The ever increasing spatial resolution

up to 0.3 meter or better is making satellite images compa-

rable with aerial images. Furthermore, satellites can acquire

images over areas that are aviation denied or inaccessible.

Point clouds derived by photogrammetry often have sim-

ilar issues as lidar. Both may have holes and the size of

the data is enormous relative to the level of detail provided.



A point cloud uses thousands of points to represent roof

planes, whereas most buildings can be modeled with a rel-

atively small number of primitive shapes. Point clouds also

lack semantic segmentation of buildings into distinct object

models that are separate from the ground terrain, and in

many real world applications, surface meshes are desired

rather than point clouds. While point clouds can be di-

rectly meshed (e.g. [15]), the resulting meshes tend to have

a “melted” appearance and do not preserve sharp corners

found in most buildings.

This paper presents an approach to create semantically

segmented 3D building mesh models from commercial mul-

tiview satellite imagery. Our system is named Danesfield in

reference to 3D modeling efforts during WWII [26]. Danes-

field is evaluated on the IARPA CORE3D Public Data [6]

consisting of DigitalGlobe WorldView 3 imagery over a few

cities. Multiview stereo reconstruction is a part of our ap-

proach, but not the focus of this paper. We leverage an ex-

isting commercial system [30, 14] for satellite multiview

stereo to produce a lidar-like point cloud. The focus of this

paper is describing a system that starts with such an image-

based point cloud, along with the source images, to produce

detailed semantically segmented and textured meshes with

sharp edges as illustrated in Figure 1.

An equally significant contribution of this paper is its

focus on real world operation. Danesfield is able to handle

areas at city scale covered by tens of satellite images. It is

packaged in a Docker container and deployed on Amazon

Web Services (AWS). It has a modern web-based interface

with a map, job list, and 3D views to launch algorithms,

monitor progress, and visualize the results. Registered users

can select an area of interest (AOI) on a map on which to

run the algorithms. The algorithms are run on the server and

the final 3D textured model is rendered in the browser. All

of the work described in this paper—including algorithms,

server deployment, and web interface—is released under a

permissive open source software licence1.

The remainder of this paper is organized as follows. Sec-

tion 2 discusses related work in 3D reconstruction from

satellite images and image-derived point clouds. Section 3

describes the technical approach and algorithm details. Sec-

tion 4 provides results of experiments on the CORE3D pub-

lic data including comparisons with some alternative meth-

ods. Sections 5 discusses the web application and its de-

ployment on cloud infrastructure. Lastly, conclusions are

offered in Section 6.

2. Related Work

There has been decades long effort in automated 3D re-

construction from both photogrammetry and computer vi-

sion communities. The first step towards 3D reconstruc-

1https://github.com/kitware/danesfield-app

tion using images is to generate point clouds through image

matching. Using the IARPA CORE3D dataset, [10] intends

to handle images collected at different dates with significant

lighting and vegetation differences. Unlike previous work,

e.g., [23], the authors sort all images into pairs and carry out

image matching pair by pair. The resultant Digital Surface

Models (DSMs) from each pair are then incrementally fused

through the k-means clustering technique. The advantage of

the method is two fold—it does not need global bundle ad-

justment and the pairwise DSM can be added to the fusion

process once it is available. However, there is no compar-

ative evaluation with reference to ground truth. Using the

same CORE3D images, Gong and Fritsch [11] propose a

pipeline for processing the benchmark data to digital sur-

face models. Suitable image pairs are selected according to

the incidence angle and capture date. A bias-corrected RPC

(Rational Polynomial Coefficient) model is then applied to

generate epipolar images. The subsequent image matching

is carried out by using the tSGM method, the core algorithm

of SURE, a software product from nFrames. tSGM is an en-

hanced version of Semi Global Matching (SGM [32]). The

resultant point cloud is filtered to generate a DSM [11]. The

final DSM can present small structures comparable with the

ones from airborne lidar. Gong and Fritsch [11] conclude

that landcover (especially vegetation) changes among dif-

ferent seasons can not be handled easily. Similarly, point

cloud filtering needs to be fine tuned to assure a quality

DSM. The performance of the entire pipeline needs to be

further evaluated by testing more varying urban areas [11].

After identifying some common but challenging difficulties

in working with satellite images due to seasonal appearance

differences and scene changes, [4] present a lightweight so-

lution based on recent convolutional neural network (CNN)

models. It recognizes the need for reliable image pair se-

lection in multiview 3D reconstruction. To promote future

studies, the authors present a novel large-scale public data

set for semantic stereo with multiview, multi-band, inciden-

tal satellite images [4] [6].

Once the point clouds are created they will follow a pro-

cedure similar to the one applied to lidar point clouds for

3D reconstruction. According to [2], surface reconstruc-

tion is a process by which a 3D object is inferred, or re-

constructed, from a collection of discrete points. It states

that reconstruction is ill-posed unless certain priors are uti-

lized. Depending on the scenes to be recovered, a variety of

cues or priors should be utilized, including geometric shape,

smoothness, symmetry, topology, structures, primitive rela-

tions etc. The quickly growing data volume from different

types of sensors means that dealing with city scale scenes

will become more common. Recovering such large-scale

scenes is a stimulating scientific challenge, especially when

this needs to be done in an online environment [2]. As a

conceptual and feasibility study, Haene et al. [12] propose a



mathematical framework to formulate and solve a joint seg-

mentation and dense reconstruction problem. They argue

that knowing either the semantic class or the surface direc-

tion of a shape would help inferring the other. Tests on a few

simple data sets with limited complexity demonstrate some-

what consistent results. The framework developed by [22]

treats polygonal surface reconstruction from point clouds

as a binary labeling problem. They seek an optimal com-

bination of the intersected planes under manifold and wa-

tertight constraints. However, the work is mostly based on

separated, individual buildings with a rather clean neighbor-

hood, which leaves open the scalability of the approach and

the inclusion of geometric primitives other than planes. To

handle poor-quality data, missing data, noise and outliers

in point clouds, Zhang et al. [43] first consolidate classi-

fied building points and reconstruct the buildings from the

consolidated point clouds. However, the method is unable

to explicitly create large-scale urban building models with

geometric 3D-primitives like planes, cylinders, spheres or

cones. In a similar study, authors of [44] attempt to use

3D CNN for classifying large scale point clouds. However,

its performance is very much dependant how well the 3D

CNN is trained, especially when the urban roofs have vari-

eties of colors, shapes and sizes. In addition, no wireframe

or boundary reconstruction based on geometric primitives is

achieved. [9] use stereo pairs of satellite images to simulta-

neously retrieve geometry and semantics of cities. Although

several large scale cities are tested and the computation time

is reasonable (from a few to tens of minutes), buildings can

only be modeled by piece-wise flat planes and there is no

texture mapping applied.

3. Approach

The flowchart in Figure 2 gives an overview of our ap-

proach. Co-collected panchromatic (PAN) and multispec-

tral (MSI) WorldView 3 (WV3) image pairs are fed into In-

tersect Dimension [30, 14], a commercial multiview stereo

software system developed by Raytheon. That software

provides the bundle adjusted RPC camera models and a

dense point cloud (see Figure 1, top). The point cloud and

imagery are then normalized by various pre-processing or

normalization steps described in Section 3.1. In brief, af-

ter the point cloud is rendered into a DSM, a digital terrain

model (DTM) is estimated and subtracted from the DSM

to create a normalized digital surface model (nDSM). The

MSI images are corrected to top of atmosphere reflectance

and orthorectified using the DSM. A normalized difference

vegetation index (NDVI) is also computed from these or-

thorectified images.

The next step is semantic segmentation of the or-

thorectified imagery into categories of building, elevated

road/bridge, and background as described in Section 3.2.

Multiple deep networks are compared for this step and
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Figure 2. Processing stages of the proposed system. Data sources

are shown in blue; the commercial satellite MVS product [30] is in

red; standard pre- and post-processing steps are in yellow; and the

novel algorithm contributions are in green. Material classification

is also part of the complete system but covered in a separate paper

(Purri et al. [27]).

OpenStreetMap road network vector data is used to sepa-

rate building and elevated road/bridge categories.

The image segmentation results are then mapped back to

the point cloud and used to select the building roof points

from the original point cloud (likewise for bridge surface

points). Points are further segmented by roof geometry type

in Section 3.3. Specifically, a PointNet [28, 29] architecture

classifies each point in the subset of roof points into flat,

sloped, cylindrical, and spherical categories. The curved

roof surfaces, which are considerably less common, are fit

first with local cylinder and sphere models as dictated by

the segmentation result. The algorithm further segments the

remaining planar points into local planar patches based on

position, estimated surface normal, and color.

In Section 3.4, planar patches are intersected to find roof

edges and peaks with additional regularization constraints

applied to form complex roof geometries. The roof ge-

ometry is extruded downward to form complete building

meshes. A triangulated regular grid on the estimated DTM

forms the base terrain mesh.

Lastly, we apply texture mapping algorithms (see Sec-

tion 3.5) to build a texture atlas for the building, bridge, and

terrain meshes and to populate the texture map with texture

projected from the source images. Special care is given to

handle occlusion reasoning during texture map generation.

3.1. Normalization of Input Data

Multiple forms of data normalization are used to pre-

process the imagery and point cloud data into aligned, stan-

dard coordinates. The first normalization applies to the

height of the geometry. We convert the point cloud into

a digital surface model (DSM) to provide a map of abso-

lute height. However, relative height above the terrain is a

more useful input to semantic segmentation. Thus, we es-

timate a bare earth digital terrain model (DTM) from the

DSM by adopting the cloth simulation idea from Zhang et



al. [45] to the 2.5D image domain. A normalized DSM

(nDSM) gives the relative height of structures above the ter-

rain: nDSM = DSM− DTM. Figure 3 shows an example

of a DSM, estimated DTM, and nDSM. The nDSM gives

all structures a relative height above a common Z=0 ground

plane—useful for building segmentation. The resultant bare

earth DTM also gives rise to a terrain mesh via triangulation

on a regular grid. The terrain mesh is a 3D ground layer on

which final building and bridge models are added. See Fig-

ure 1, center green layer.

(a) DSM (b) DTM (c) nDSM

Figure 3. Input DSM (a) is filtered with [45] to estimate a DTM

(b). The nDSM (c) is DSM - DTM.

The second normalization occurs in image radiometry.

Since images are taken at different times from different

viewing angles under different illumination angles, their

intensity must be normalized to achieve reliable semantic

segmentation and realistic, consistent texture mapping. For

spectral band λ, the normalized intensity, Lλ, is computed

from the input pixel value, Iλ, as

Lλ =
GλAλIλ

Bλ

+Oλ, (1)

where the Gλ and Oλ are the absolute radiometric calibra-

tion gains and offsets respectively. These band-dependent

adjustment factors are provided in the DigitalGlobe WV3

specification. The Aλ and Bλ are the abscal factor and the

effective bandwidth. These values are image specific and

can be found in the image metadata (IMD) file provided

with each image. The radiometrically calibrated image is

further converted to top of atmosphere reflectance, ρλ as

ρλ =
Lλd

2π

Eλ cos(θs)
, (2)

where Lλ is the band-dependent at-sensor radiance from

equation (1), d is the Earth-Sun distance, Eλ is the band-

dependent solar irradiance, and θs is the solar zenith angle.

A third form of normalization is image registration into

a common orthorectified space such that each pixel in each

image represents the same world location. Such alignment

is nontrivial for images taken from different viewing angles

in complex 3D environments. Our approach projects each

image onto the high resolution DSM to orthorectify not only

with the terrain but also using all building surfaces. With

complex DSM geometry, areas of occlusion will occur in

orthorecified results, but these can be masked out in further

processing.

3.2. Semantic Segmentation for Buildings

The task of semantic segmentation is to segment the

scene into semantic categories like ground, buildings, veg-

etation, roads, etc. In particular, our primary objective is

to create masks to separate buildings and elevated roads

from the background for 3D reconstruction of these two

classes. Our approach adopts a simple binary segmenta-

tion of structures versus background and then uses match-

ing with OpenStreetMap road data to further segment struc-

tures into buildings and elevated roads/bridges. Trees and

other vegetation are considered background, even when el-

evated above the ground.

Semantic segmentation fuses input from orthorectified

MSI and nDSM. Furthermore, we found the normalized

difference vegetation index (NDVI) to be a useful input

as well. NDVI is derived directly from the red and near-

IR bands of MSI as NDVI = NIR−Red

NIR+Red
. This normal-

ized value correlates strongly with the presence of vegeta-

tion [37]. We compute NDVI for each orthorectified MSI

and average them.

Multiple methods are compared for semantic segmenta-

tion. As a baseline we consider a simple approach of apply-

ing thresholds with morphological cleanup and hysteresis

within connected components to both the nDSM and NDVI

images. In short, pixels are structures if above the ground

(nDSM > 4 meters with hysteresis down to 2 meters) and

not vegetation (NDVI < 0.1 with hysteresis up to 0.2).

We also consider multiple deep neural network

structures for semantic segmentation, including:

GoogLeNet [36], DenseUNet (a combination of U-Net [31]

and DenseNet [13]), and PSPNet [46].

The GoogLeNet [36] based semantic segmentation net-

work takes RGB (a subset of MSI bands), nDSM, and NDVI

as input and outputs a high-resolution building mask. To

keep a high resolution of the output mask, the pool1, pool3

and pool5 layers are removed from the original GoogLeNet

model. All the fully connected layers are also removed. The

final layer is an 1 × 1 convolutional layer with 2 channels

followed by Softmax function as a binary classifier for each

pixel in the final feature map. Therefore, the output mask is

1/4 the width and 1/4 the height of the input.

The U-Net [31] architecture is considered because it re-

quires very few annotated images and achieves very good

performance in other semantic segmentation domains. In-

spired by DenseNet [13], we propose a modified version of

U-Net, which we call “DenseUNet” (see Figure 4), to re-

place the original conv1, conv2, conv3, conv4 and center

in U-Net with 5 dense blocks, and also replace the Max-

pooling layer in U-Net with a transition layer to connect

two consecutive dense blocks. Our proposed DenseUNet

combines dense blocks that perform iterative concatenation

of feature maps with the advantages of the U-Net architec-

ture for semantic segmentation. Different from GoogLeNet,



the output mask is the same width and the same height of

the input.

Dense Block 1

Center Dense Block

Dense Block 2

Dense Block 4

Dense Block 3

RGB

nDSM

NDVI

Figure 4. The architecture of DenseUNet.

Lastly, we consider PSPNet [46] because it outperforms

other deep neural networks on multiple semantic segmen-

tation benchmarks like ImageNet Scene Parsing Challenge

Dataset, PASCAL VOC Dataset, ADE20K Dataset and

Cityspace Dataset. The Pyramid Pooling Module in PSP-

Net adopts the average pooling at four scale levels, i.e., 1x1,

2x2, 3x3, and 6x6 (kernel size, stride), so that it is good at

extracting both global and sub-regional contextual features,

which are fused as the global contextual prior for pixel-

level scene parsing and semantic segmentation under com-

plicated scenes. Like DenseUNet, the output mask shares

the same width and height with the input.

An additional post-process step is applied to seperate el-

evated roads and bridges from building masks. We query

OpenStreetMap (OSM) for road vectors with a “bridge” la-

bel and rasterize them with a width of 10 meters. Build-

ings in the mask that overlap with the rasterized road are

removed, and the rasterized bridges are used as the mask

for the bridge and elevated road class.

Final segmentation masks are mapped back to the point

cloud to extract only the subset of points on building roofs

for further processing, and likewise for bridges.

3.3. Roof Shape Segmentation

To discover the geometric shape of the roof, we propose

shape segmentation to recognize different primitive shapes

in the point cloud. Each roof may locally consist of dif-

ferent types of surfaces (flat, sloped, cylindrical and spher-

ical). The proposed shape segmentation method assigns a

shape label to each point in the cloud. To determine each

label, the algorithm needs to consider the overall shape of

the roof (global information) and the location of the point

within the roof (local information).

We adopt PointNet [28] to classify the points. A Point-

Net module processes each point with a multi-layer percep-

tion network to get a local feature. A symmetric function

(e.g. element-wise max pooling) is applied to all the local

features to get a global feature. The local and the global

features are aggregated for use in shape prediction.

A challenge existing in training this network is obtaining

balanced training data. There are often far more planar roofs

than curved roofs in actual buildings, and the model is easily

biased toward planes. Simulation of additional curved roofs

(spherical and cylindrical) to balance the training data is

critical. We initially synthesized training data by sampling

points from ideal spheres and cylinders with added Gaus-

sian noise. However, this performs poorly (See Section 4.2)

because the simulated noise statistics differ from noise in

real data. Instead, we propose to synthesize curved surfaces

by starting with planar roof patches sampled from the real

data and “bending” the data into cylindrical or spherical sec-

tions. The original noise characteristics of the planar roof

are mostly preserved in the synthesized roof, resulting in

better performance.

3.4. Building Reconstruction

Building reconstruction uses multiple geometric primi-

tives to form a 3D watertight boundary representation for

buildings. We 1) assign the points to specify shape instances

with RANSAC, 2) find the boundary of each shape instance,

3) refine the boundary and guarantee the continuity of the

roof by checking the topology of the building roof.

To extract a shape instance from the point cloud, points

in each shape type (as segmented in Section 3.3) are han-

dled separately. We iteratively apply RANSAC [41, 7] to

the point cloud. It detects an instance of the shape, fits the

parameters, removes the inliers from further consideration,

and continues to find the next object in the remaining points.

Multiple cues of position, normal, and color in hypothesis

validation are used to determine planar surfaces. For each

inlier, we compute a score as the product of point-plane dis-

tance, angular difference of point and plane normals, and

color difference to the average color of inliers. The weights

are averaged over all points and compared to a threshold to

decide whether to accept each hypothesis.

An alpha-shape hull [3, 33] of the inliers of each shape

instance is used to estimate the boundary of that shape.

However, due to noise on the point cloud as well as the

fitting error, the boundary of shapes in one roof may not

be continuous, especially near the ridge of the roof, and

the shape boundary itself could be irregular. To make a

solid roof model, we apply a hierarchical roof topology

tree [40, 39] which considers the topology of the roof as

a tree structure and helps build solid roof ridges and reg-

ular roof boundaries. Given the refined boundary of each

shape instance, we use Delaunay triangulation [8] to con-

struct the triangular meshes for texture mapping. We ex-

trude the roof down to lower roof levels and, ultimately, to

the ground (DTM), to form the facades. After these steps,

we group all corresponding building components including

roof surfaces, walls, and bottom surfaces to form a solid

building with boundary representation.



3.5. Texture Mapping

The task of texture mapping consists of generating tex-

tures for our reconstructed 3D models from the satellite im-

ages. We adapt the work of Pages et al. [24, 25] from human

body to urban 3D models and large satellite images.

While significant work exists in optimal mesh UV un-

wrapping [20, 19, 21], we take a simpler approach by creat-

ing seams at all plane boundaries. This avoids texture dis-

tortion but results in many disjoint rectangular patches and

some of a patches of more complex shape. Optimal tex-

ture packing is a complex problem, but some very efficient

heuristics exist. In our case, we rotate faces so the longest

edge is horizontal and pack in order of increasing height.

Occlusion is an important issue to consider for satellite

images; some parts of the scene are hidden or shadowed.

Naı̈vely projecting images results in occluded areas filled

with the wrong texture as shown in Figure 5. Likewise,

selecting pixels from regions in shadow results in poor tex-

ture. Both shadows and occlusion are easy to detect with

a Z-buffer depth test. Occlusion testing uses an RPC cam-

era for depth tests while shadow testing uses a virtual affine

camera aligned with the sun angle. Using shadow and oc-

clusion masks allows the algorithm to select which image is

best for sampling texture at each surface location.

(a) naı̈ve (b) mask occlusions (c) combine images

Figure 5. Texture map occlusion detection and filling

4. Experimental Results

Danesfield was evaluated on the IARPA CORE3D Pub-

lic Data [6], which consists of multiview WV3 PAN and

MSI image pairs for three U.S. Cities: San Diego, CA

(46 views); Jacksonville, FL (29 views); and Omaha, NE

(45 views). Ground truth DSM and class labels (build-

ing/elevated road/background) are provided for only two ar-

eas of interest: the UCSD campus (1 km2) and downtown

Jacksonville (2 km2). Ground truth is derived from high

resolution airborne lidar and manual annotations. We eval-

uate our system quantitatively on the CORE3D ground truth

AOIs using metrics proposed by Bosch et al. [5]. We quan-

titatively compare building segmentation methods in Sec-

tion 4.1 and roof shape segmentation in Section 4.2 before

demonstrating overall system performance in Section 4.3.

We also provide additional qualitative results on other areas

covered by the imagery.

4.1. Building Semantic Segmentation

We compare three deep learning architectures,

GoogLeNet, DenseUNet and PSPNet as well as the

baseline threshold method on two CORE3D AOIs. The

training data is collected from regions that do not overlap

with the test AOIs. The OpenStreetMap building mask is

used as a training mask. Note that OpenStreetMap may

contain annotation errors. However, the final segmentation

models seem to work reasonably well. The results are

summarized in Table 1 and Figure 6.

UCSD Jacksonville

Method P R IoU P R IoU

Threshold 0.69 0.90 0.64 0.83 0.83 0.71

GoogLeNet 0.84 0.89 0.75 0.79 0.80 0.66

DenseUNet 0.87 0.85 0.75 0.63 0.86 0.57

PSPNet 0.82 0.90 0.75 0.76 0.87 0.69

Table 1. Comparison of building segmentation performance across

methods on CORE3D UCSD and Jacksonville AOIs. Scores are

precision (P), recall (R), and intersection over union (IoU).

Ground Truth Threshold PSPNet

Figure 6. Visualization of semantic segmentation on both UCSD

(top) and Jacksonville (bottom). Red areas are ignored in scoring.

As we can see, all three deep learning architectures per-

form similarly and much better than the threshold baseline

in term of both precision and IoU on UCSD. The thresh-

old baseline works marginally better than deep learning

based methods on Jacksonville due to our training data be-

ing mostly collected from rural regions with its distribution

significantly different from that of Jacksonville which con-

tains elevated roads and skyscrapers.

4.2. Roof Shape Segmentation

To evaluate the performance of the proposed roof shape

segmentation algorithm, we manually annotate the roof type



RGB Ideal Shapes Bent Data Ground Truth Planar Segments

(a) UCSD Campus - Roof type accuracy improves from 10.5% (ideal) to 87.1% (bent).

(b) Downtown Jacksonville - Roof type accuracy improves from 13.1% (ideal) to 95.9% (bent).

Figure 7. Roof type point cloud segmentation results comparing training on ideal synthetic shapes to real planar data bent to curved shapes.

Classes are flat (blue), sloped (orange), cylindrical (green), and spherical (red). The last column shows the subsequent segmentation of

planar points into specific plane instances (shown in random colors).

label for all the buildings in UCSD Campus and Downtown

Jacksonville. Four types of roofs—flat, sloped, cylindrical,

and spherical—are considered (the 4th column in Figure 7).

We compare a model trained with synthesized point clouds

using our bending method (Section 3.3) to a model trained

with points sampled from ideal shape with Gaussian noise.

Each shape has 300 point clouds for training (1,200 for

each training set). PointNet++ [29] is chosen as the training

model.

We first run the cluster extraction method in PCL [1] to

separate isolated point clouds into different clusters based

on the Euclidean distance. Each cluster is sent to the seg-

mentation model to assign a shape label to each point in the

point cloud. The predicted results are shown in Figure 7.

The model learned with ideal shape always recognizes pla-

nar roofs as sloped roofs. The error is due to attached struc-

tures on top of a flat roof and the reconstruction error at the

edge of the roof. The model trained with our synthesized

roof achieves a much better result. It is even able to recog-

nize a cylindrical roof in UCSD campus (marked in green).

4.3. Overall Reconstruction Performance

Performance of the final 3D models with reference to the

CORE3D ground truth [6] and metrics [5] is given in Ta-

ble 2. Qualitative results, showing both semantic segments

and texture, are shown in Figure 8. The scores indicate that

our current system emphasizes correctness over complete-

ness.

Metric UCSD Jacksonville

2D Correctness 0.91 0.9

2D Completeness 0.75 0.71

3D Correctness 0.88 0.91

3D Completeness 0.75 0.75

Geolocation Error (m) 1.58 2.24

Z-RMSE (m) 1.29 0.6

H-RMSE (m) 1.8 2.06

Run Time (hr/km2) 4.8 2.28

Table 2. Quantitative metrics [5] for the complete system.

5. Web-based Deployment

The Danesfield web client is a modern web applica-

tion based on Vue.js [42]. The user interface utilizes

Vuetify [38] UI library and embraces Material Design with

its UI/UX patterns. The application leverages GeoJS [18]

for geospatial map related visualization of base maps, raster,

and vector data, and uses VTK.js [17] for 3D model visual-

ization. A screen capture of the user interface is shown in

Figure 9. The left pane allows for selection of data to pro-

cess or visualize. The center shows a raster segmentation

image for the selected AOI overlaid on a map. The right

shows an interactive 3D view with the final texture mapped

model.

The Danesfield back-end builds on the Girder [16] data

management platform to manage the source imagery and

computed products. It leverages Celery [34] for distributed

job management. The entire system was deployed to a

single GPU-enabled AWS instance (p3.2xlarge) provid-

ing eight virtual CPUs, 61GB of main memory, and one
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Figure 8. Final 3D mesh results several regions in the IARPA CORE3D dataset. Meshes on top are colored by semantic category: green

for terrain, cyan for elevated roadways, yellow for curved roof buildings, and gray for flat roof buildings. Bottom meshes are textured.

Figure 9. Web-based Danesfield application running on AWS.

NVIDIA Tesla V100 with 16GB of GPU memory at a cur-

rent cost of $3.06 USD per hour. On average Danesfield

processes one km2 of data (30-50 WV3 images at about

0.3m/pixel) in 3.26 hours, so the total operating cost is just

under $10 USD per km2. The majority of the processing

time is spent in the point could generation stage.

In the future our system could be made considerably less

expensive to operate by splitting the processing across mul-

tiple AWS instances that are brought up and down on de-

mand and running only the GPU jobs on the GPU instance.

The p3.2xlarge instance is much more expensive than others

due to the GPU that is only needed by deep learning steps.

6. Conclusion

We presented an algorithmic pipeline to create semantic

3D models from multiview satellite images. Once the pho-

togrammetric point clouds are created, geometric, radio-

metric and terrain normalization processes enable accurate

semantic segmentation over the scene. The subsequent 3D

reconstruction is based on a model- and data-driven (learn-

ing and non-learning) coupled approach, while the former

determines the roof manifold type and the latter forms the

exact geometry.

The entire algorithmic pipeline has been integrated into

a complete, operational system. Evaluation by independent

users on additional non-public WV3 data has demonstrated

that our system generalized beyond the CORE3D public

data. With the exception of point cloud generation, the en-

tire algorithmic pipeline, deployment framework, and web

application are open source (Apache 2.0 license). We aim to

adapt existing open multiview stereo software to the satel-

lite imagery domain to establish a completely end-to-end

open source pipeline in the future. There is room for im-

provement in various areas, but the current system provides

the community a firm foundation to build future research or

even commercial products.
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