
Urban Semantic 3D Reconstruction from Multiview Satellite Imagery

Matthew J. Leotta, Chengjiang Long, Bastien Jacquet, Matthieu Zins, Dan Lipsa,
Jie Shan, Bo Xu, Zhixin Li, Xu Zhang, Shih-Fu Chang,

Matthew Purri, Jia Xue, Kristin Dana
{matt.leotta, chengjiang.long, bastien.jacquet, matthieu.zins, dan.lipsa}@kitware.com,

{jshan, xu1128, li2887}@purdue.edu, {xu.zhang, sc250}@columbia.edu,
{matthew.purri, jia.xue, kristin.dana}@rutgers.edu

Abstract

Methods for automated 3D urban modeling typically re-
sult in very dense point clouds or surface meshes derived
from either overhead lidar or imagery (multiview stereo).
Such models are very large and have no semantic separa-
tion of individual structures (i.e. buildings, bridges) from
the terrain. Furthermore, such dense models often ap-
pear “melted” and do not capture sharp edges. This paper
demonstrates an end-to-end system for segmenting build-
ings and bridges from terrain and estimating simple, low
polygon, textured mesh models of these structures. The ap-
proach uses multiview-stereo satellite imagery as a starting
point, but this work focuses on segmentation methods and
regularized 3D surface extraction. Our work is evaluated
on the IARPA CORE3D public data set using the associ-
ated ground truth and metrics. A web-based application
deployed on AWS runs the algorithms and provides visual-
ization of the results. Both the algorithms and web applica-
tion are provided as open source software as a resource for
further research or product development.

1. Introduction

Accurate 3D geo-spatial mesh models of urban areas
have uses in a variety of applications including navigation
and city planning. There are several methods for obtaining
these 3D models. 3D models scanned with airborne lidar
are accurate and precise, but collection productivity is lim-
ited by the required low flight height and narrow swath. Al-
though recent Geiger-mode lidar can acquire data at a much
higher productivity, its high noise and low penetration capa-
bility prevent it from being used for routine production [34].
Moreover, lidar acquisition needs separate optical sensors
to collect natural, true color images over the ground. The
use of multiple sensors, operated either simultaneously or
independently, can cause additional difficulties in data pro-
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Figure 1. From satellite images and image-derived point clouds,
our approach segments and models buildings (grey), bridges
(cyan), and terrain (green) before texturing from the imagery.

cessing, such as precise data co-registration and handling
the inconsistency between resolutions.

Multiview satellite images provide another means for re-
constructing either point or surface models with photogram-
metry. Compared to airborne lidar and images, satellite im-
ages can cover much larger areas from a highly stable plat-
form. The high agility of modern satellite platforms and
sensors enables multiview coverage in a targeted area within
a short period of time. Ever increasing spatial resolution up
to 0.3 meter or better makes satellite images comparable
with aerial images. Furthermore, satellites can acquire im-
ages over areas that are aviation denied or inaccessible.

Point clouds derived by photogrammetry often have sim-
ilar issues as lidar. Both may have holes and the size of
the data is enormous relative to the level of detail provided.



Most buildings can be modeled with a relatively small num-
ber of planar facets, but a point cloud will use thousands
of points to represent the same planes. Point clouds also
lack semantic segmentation of buildings into distinct object
models that are separate from the ground terrain. Finally,
surface meshes are often desired rather than points. While
point clouds can be directly meshed (e.g. [15]), the result-
ing meshes tend to have a “melted” appearance and do not
preserve sharp corners found in most buildings.

This paper presents an approach to build semantically
segmented 3D building mesh models from commercial
multi-view satellite imagery. Our system is named Danes-
field in reference to 3D modeling efforts during WWII [26].
Danesfield is evaluated on the IARPA CORE3D Public
Data [6] consisting of DigitalGlobe WorldView 3 imagery
over a few cities. Multiview stereo reconstruction is a part
of our approach, but not the focus of this paper. We leverage
an existing commercial system [29, 14] for satellite multi-
view stereo to produce a lidar-like point cloud. The focus
of this paper is describing a system that starts with such
an image-based point cloud, along with the source images,
to produce detailed semantically segmented and textured
meshes with sharp edges as illustrated in Figure 1.

An equally significant contribution of this paper is its
focus on real world operation. Danesfield is able to handle
areas at city scale covered by tens of satellite image. It is
packaged in a Docker container and deployed on Amazon
Web Services (AWS). It has a modern web-based interface
with a map, job list, and 3D views to launch algorithms,
monitor progress, and visualize the results. Registered users
can select an area of interest (AOI) on a map on which to
run the algorithms. The algorithms are run on the server and
the final 3D textured model is rendered in the browser. All
of the work described in this paper—including algorithms,
server deployment, and web interface—is released under a
permissive open source software licence1.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work in satellite image 3D recon-
struction. Section 3 describes the technical approach and
algorithm details. Section 4 provides results of experiments
on the CORE3D public data including comparisons of some
alternative methods. Sections 5 discusses the web appli-
cation and its deployment on cloud infrastructure. Lastly,
conclusions are offered in Section 6.

2. Related Work

There has been decades long effort in automated 3D re-
construction from both photogrammetry and computer vi-
sion communities. The first step towards 3D reconstruc-
tion using images is to generate point clouds through image
matching. Using the IARPA CORE3D dataset, [10] intends

1https://github.com/kitware/danesfield-app

to handle images collected at different dates with important
lighting and vegetation differences. Unlike previous work,
e.g., [23], the authors sort all images into pairs and carry
out image matching pair by pair. The resultant Digital Sur-
face Models (DSMs) from each pair are then incrementally
fused through the k-means clustering technique. The ad-
vantage of the method is two fold—it does not need global
bundle adjustment and the pairwise DSM can be added to
the fusion process once it is available. However, there is
no comparative evaluation with reference to ground truth.
Using the same CORE3D images, Gong and Fritsch [11]
propose a pipeline for processing the benchmark data to
digital surface models. Suitable image pairs are selected
according to the incidence angle and capture date. A bias-
corrected RPC model is then applied to generate epipolar
images. The subsequent image matching is carried out by
using the tSGM method, the core algorithm of SURE, a
software product from nFrames. tSGM is an enhanced ver-
sion of Semi Global Matching (SGM [31]). The resultant
point cloud is filtered to generate a DSM [11]. The final
DSM presents small structures comparable with the ones
from airborne lidar. Gong and Fritsch [11] conclude that
landcover, especially vegetation, changes among different
seasons can not be handled easily. Similarly, point cloud
filtering needs to be fine tuned to assure a quality DSM.
The performance of the entire pipeline needs to be further
evaluated by testing more varying urban areas [11]. Af-
ter identifying some common but challenging difficulties in
working with satellite images due to seasonal appearance
differences and scene changes, [4] present a lightweight so-
lution based on recent convolutional neural network (CNN)
models. It recognizes the need for reliable image pair se-
lection in multi-view 3D reconstruction. To promote future
studies, the authors present a novel large-scale public data
set for semantic stereo with multi-view, multi-band, inci-
dental satellite images [4] [6].

Once the point clouds are created they will follow a pro-
cedure similar to the one applied to lidar point clouds for
3D reconstruction. According to [2], surface reconstruc-
tion is a process by which a 3D object is inferred, or re-
constructed, from a collection of discrete points. It states
that reconstruction is ill-posed unless certain priors are uti-
lized. Depending on the scenes to be recovered, a variety of
cues or priors should be utilized, including geometric shape,
smoothness, symmetry, topology, structures, primitive rela-
tions etc. The quickly growing data volumes from different
types of sensors means dealing with city scale scenes will
become more common. Recovering such large-scale scenes
is a stimulating scientific challenge, especially when this
needs to be done in an online environment [2]. As a con-
ceptual and feasibility study, Haene et al. [12] propose a
mathematical framework to formulate and solve a joint seg-
mentation and dense reconstruction problem. They argue
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that knowing either the semantic class or the surface direc-
tion of a shape would help inferring the other. Tests on a few
simple data sets with limited complexity demonstrate some-
what consistent results. The framework developed by [22]
treats polygonal surface reconstruction from point clouds
as a binary labeling problem. They seek an optimal com-
bination of the intersected planes under manifold and wa-
tertight constraints. However, the work is mostly based on
separated, individual buildings with a rather clean neighbor-
hood, which leaves open the scalability of the approach and
the inclusion of geometric primitives other than planes. To
handle poor-quality data, missing data, noise and outliers
in point clouds, Zhang et al. [42] first consolidate classi-
fied building points and reconstruct the buildings from the
consolidated point clouds. However, the method is unable
to explicitly create large-scale urban building models with
geometric 3D-primitives like planes, cylinders, spheres or
cones. In a similar study, authors of [43] attempt to use
3D CNN for classifying large scale point clouds, however,
its performance is very much dependant how well the 3D
CNN is trained, especially when the urban roofs have vari-
eties of colors, shapes and sizes. In addition, no wireframe
or boundary reconstruction based on geometric primitives is
achieved. [9] use stereo pairs of satellite images to simulta-
neously retrieve geometry and semantics of cities. Although
several large scale cities are tested and the computation time
is reasonable (from a few to tens of minutes), buildings can
only be modeled by piece-wise flat planes and there is no
texture mapping applied.

3. Approach
The flowchart in Figure 2 gives an overview of our ap-

proach. Co-collected panchromatic (PAN) and multispec-
tral (MSI) WorldView 3 (WV3) image pairs are fed into In-
tersect Dimension [29, 14], a commercial multiview stereo
software system developed by Raytheon. That software
provides the bundle adjusted RPC camera models and a
dense point cloud (see Figure 1, top). The point cloud and
imagery are then normalized by various pre-processing or
normalization steps described in Section 3.1. In brief, the
point cloud is rendered into a DSM, a terrain map (DTM)
is estimated and subtracted from the DSM for height nor-
malization. The MSI images are corrected to top of atmo-
sphere reflectance and orthorectified using the DSM into
common coordinates. A normalized difference vegetation
index (NDVI) is also computed from these orthorectified
images.

The next step is semantic segmentation of the or-
thorectified imagery into categories of building, elevated
road/bridge, and background as described in Section 3.2.
Multiple deep networks are compared for this step and
OpenStreetMap road network vector data is used to sepa-
rate building and elevated road/bridge categories.
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Figure 2. Processing stages of the proposed system. Data sources
are shown in blue; the commercial satellite MVS product [29] is in
red; standard pre- and post-processing steps are in yellow; and the
novel algorithm contributions are in green. Material classification
is also part of the complete system, but not covered in this paper.

The image segmentation results are then mapped back to
the point cloud and used to select the building roof points
from the original point cloud (likewise for bridge surface
points). Points are further segmented by roof geometry type
in Section 3.3. Specifically, a PointNet [27] architecture
classifies each point in the subset of roof points into flat,
sloped, cylindrical, and spherical categories. The curved
roof surfaces, which are considerably less common, are fit
first with local cylinder and sphere models as dictated by the
segmentation. The algorithm further segments the remain-
ing planar points into local planar patches based on position,
estimated surface normal, and color.

In Section 3.4, planar patches are intersected to find roof
edges and peaks with additional regularization constraints
applied to form complex roof geometries. The roof ge-
ometry is extruded downward to form complete building
meshes. A triangulated regular grid on the estimated DTM
forms the base terrain mesh.

Lastly, we apply fairly standard texture mapping algo-
rithms (see Section 3.5) to build a texture atlas for the build-
ing, bridge, and terrain meshes and to populate the texture
map with texture projected from the source images. Special
care is given to handle occlusion reasoning during texture
map generation.

3.1. Normalization of Input Data

Multiple forms a data normalization are used to pre-
process the imagery and point cloud data into aligned, stan-
dard coordinates. Semantic segmentation needs a digital
surface model (DSM), which is easily produced by ren-
dering a height map from the point clouds. However, the
segmentation of buildings should consider the local height
of structures above the ground, not the absolute elevation.
Thus, we need to factor out the terrain. Given a digi-
tal terrain model (DTM) a normalized DSM is nDSM =
DSM � DTM. To this end, we estimate a DTM from the




