Overview
Automatic, simple 3D mesh models from satellite images
- Build an existing commercial point cloud generation software (Raytheon Intersect Dimension)
- Segment scene into buildings, bridges, and terrain
- Model buildings/bridges with geometric primitives
- Regularized planar roof sections
- Cylindrical and spherical roofs
- Texture map using multiple satellite images
- Deploy on AWS with web-based application for easy use
- Release open source software

Preprocessing
- Render a Digital Surface Model (DSM)
- Pan-sharpen and orthorectify images to DSM
- Normalized Difference Vegetation Index (NDVI) from ortho images to help remove trees
- Estimate Digital Terrain Model (DTM) with cloth simulation filter (Zhang et al. [2])
- Normalized DSM (nDSM) to factor out terrain

Semantics & Shape Fitting
- Semantic segmentation from MS1, nDSM, & NDVI inputs
 - Two-class (building / background) first, e.g. DSM roads to separate building / bridge
 - Simple thresholding (NDVI > 0.1 and nDSM > 2m) as morphology as a baseline
 - Compared three deep networks (GoogLeNet [7], DenseNet [5]-[6], PSPNet [6])
 - Use segmentation to classify building/bridge points from point cloud
 - Classify points as flat, sloped, cylindrical, or spherical with PointNet++ [4]
 - Augment limited curated training samples by “bending” planar samples
 - Fit roof segments per shape category
 - Hierarchical roof topology tree [4] applied to planar segments

Semantics & Shape Fitting
- Semantic segmentation from MS1, nDSM, & NDVI inputs
 - Two-class (building / background) first, e.g. DSM roads to separate building / bridge
 - Simple thresholding (NDVI > 0.1 and nDSM > 2m) as morphology as a baseline
 - Compared three deep networks (GoogLeNet [7], DenseNet [5]-[6], PSPNet [6])
 - Use segmentation to classify building/bridge points from point cloud
 - Classify points as flat, sloped, cylindrical, or spherical with PointNet++ [4]
 - Augment limited curated training samples by “bending” planar samples
 - Fit roof segments per shape category
 - Hierarchical roof topology tree [4] applied to planar segments

Software
- Software named Danesfield in honor of the WWII center for 3D aerial photographic intelligence
- Algorithms in Python with some C++
- Environment configured with Conda or Docker
- Web Application
 - 3D model and map-based visualization
 - Data and job management
 - Deployed on Amazon Web Services
- Open source: Apache License Ver 2.0

Acknowledgements
We thank Steven Siska and Mark Berlin of Raytheon for contributing point cloud generation tools, Myron Brown and team at DANF/LRT for the DCE3D data location and accuracy, and Raytheon for funding this work. This research is based upon work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Agency (IARPA) under contract number D17PC00206. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. Government.

https://github.com/Kitware/Danesfield-App

Urban Semantic 3D Reconstruction from Multiview Satellite Imagery

Matthew J. Leotta, Chengjiang Long, Bastien Jacquet, Matthieu Zins, Dan Lipsa
Jie Shan, Bo Xu, Zhixin Li
Xu Zhang, Shih-Fu Chang
Matthew Purri, Jia Xue, Kristin Dana

Results
- Evaluated on the CORE3D public data and metrics
- Grodels on 2 AOs (UCSD and JAX)

<table>
<thead>
<tr>
<th>Method</th>
<th>UCSD</th>
<th>JAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

Software
- Software named Danesfield in honor of the WWII center for 3D aerial photographic intelligence
- Algorithms in Python with some C++
- Environment configured with Conda or Docker
- Web Application
 - 3D model and map-based visualization
 - Data and job management
 - Deployed on Amazon Web Services
- Open source: Apache License Ver 2.0

Acknowledgements
We thank Steven Siska and Mark Berlin of Raytheon for contributing point cloud generation tools, Myron Brown and team at DANF/LRT for the DCE3D data location and accuracy, and Raytheon for funding this work. This research is based upon work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Agency (IARPA) under contract number D17PC00206. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. Government.

https://github.com/Kitware/Danesfield-App