Iterative and Adaptive Sampling with Spatial Attention for Black-Box Model Explanations

Bhavan Vasu

Kitware Inc,
Clifton Park, NY, USA 12065.
{bhavan.vasu, chengjiang.long}@kitware.com

Chengjiang Long
Explainable AI - Overview

- Test task
- Optimized Objective
- Learnable Model
- Training Data

Decision

Training

- Why did you do that?
- When do you succeed?
- When do you fail?
- When can I trust you?

Ambiguity in XAI

User: “Are the legs important?!”

“What the model thinks as important is not necessarily what the user thinks as important.”
Iterative and Adaptive Sampling (IAS) - Overview

- The input image is sampled coarsely using a sliding window to obtain an aggregated saliency map.
- Simultaneously, we obtain a spatial attention map of the input image using the LRSA module.
- An adjusted saliency map is obtained after combining the saliency map from previous iteration and attention map.

- This is iteratively repeated till there is little or no change in final saliency maps.
Long-Range Spatial Attention (LRSA) - Overview

- Receptive fields limit the area of consideration to a small window in the image.

- Long-range spatial attention lets us explore and combine long range inter-pixel dependencies to produce an affinity matrix.

- The output of the LRSA module is a spatial attention map. Note that our LRSA module does not contain any learnable parameters.
Results comparison

Table 1. Comparative evaluation in terms of deletion (lower is better) and insertion (higher is better), F-1 (higher is better), IoU (higher is better), and Pointing Game (higher is better) scores at both image and pixel levels on the MS-COCO dataset.

<table>
<thead>
<tr>
<th>Method</th>
<th>Deletion ↓</th>
<th>Insertion ↑</th>
<th>F-1 ↑</th>
<th>IoU ↑</th>
<th>Pointing Game ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image-level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIME</td>
<td>0.900967</td>
<td>0.99</td>
<td>0.15390</td>
<td>0.09745</td>
<td>0.16461</td>
</tr>
<tr>
<td>RISE</td>
<td>0.1847</td>
<td>1.0</td>
<td>0.13837</td>
<td>0.13653</td>
<td>0.25</td>
</tr>
<tr>
<td>IASSA</td>
<td>0.18803</td>
<td>1.0</td>
<td>0.23658</td>
<td>0.15153</td>
<td>0.4216</td>
</tr>
<tr>
<td>Pixel-level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIME</td>
<td>10.8526e-05</td>
<td>10.96158e-05</td>
<td>1.71177e-05</td>
<td>1.08447e-05</td>
<td>0.43671e-05</td>
</tr>
<tr>
<td>RISE</td>
<td>5.5423e-05</td>
<td>28.8669e-05</td>
<td>4.26672e-05</td>
<td>2.69240e-05</td>
<td>8.95937e-05</td>
</tr>
<tr>
<td>IASSA</td>
<td>5.50534e-05</td>
<td>35.33639e-05</td>
<td>10.5960e-05</td>
<td>6.9282e-05</td>
<td>17.79331e-05</td>
</tr>
</tbody>
</table>

![Input Image](image1.png) ![LIME](image2.png) ![RISE](image3.png) ![IASSA](image4.png) ![Input Image](image5.png) ![LIME](image6.png) ![RISE](image7.png) ![IASSA](image8.png)
Results across k iterations

(a) Input Image (b) $k = 5$ (c) $k = 10$ (d) $k = 15$ (e) $k = 20$ (f) $k = 25$
Thank you!

Please visit us at Poster 7 to know more.