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Abstract

We propose a novel method for predicting image labels
by fusing image content descriptors with the social media
context of each image. An image uploaded to a social me-
dia site such as Flickr often has meaningful, associated in-
formation, such as comments and other images the user has
uploaded, that is complementary to pixel content and help-
ful in predicting labels. Prediction challenges such as Ima-
geNet [6] and MSCOCO [19] use only pixels, while other
methods make predictions purely from social media context
[21]. Our method is based on a novel fully connected Con-
ditional Random Field (CRF) framework, where each node
is an image, and consists of two deep Convolutional Neural
Networks (CNN) and one Recurrent Neural Network (RNN)
that model both textual and visual node/image information.
The edge weights of the CRF graph represent textual simi-
larity and link-based metadata such as user sets and image
groups. We model the CRF as an RNN for both learning
and inference, and incorporate the weighted ranking loss
and cross entropy loss into the CRF parameter optimization
to handle the training data imbalance issue. Our proposed
approach is evaluated on the MIR-9K dataset and exper-
imentally outperforms current state-of-the-art approaches.

1. Introduction

Multimedia data such as images and videos are being

produced and shared at an unprecedented and accelerating

pace in recent years. For example, on YouTube, video data

is currently being uploaded at the rate of approximately 30

million hours a year. This drives a strong need to develop

automatic tools to help users understand, organize, and re-

trieve images and videos from vast collections. While re-

cent advances have been impressive, real-world multime-

dia, especially those shared on the image-sharing platform

Flickr, can still be challenging to index and retrieve using

Figure 1: Two sample images with the title in bold, im-

age description and the corresponding ground-truth labels

in italic from the MIR-9K dataset. The goal of this paper is

to make full use of such text information as well as the link-

based metadata like user sets and image groups to boost the

quality of image labeling.

only visual information, due to complex content, partial oc-

clusion, and diverse styles and quality.

Images in social media do not exist in isolation. As il-

lustrated in Figure 1, a rich social multimedia database con-

tains images, text information such as image title, descrip-

tion, and comments, as well as user information (e.g., user-

name, location, network of contacts), user image gallery,

uploader-defined groups, and links between shared content.

Most image recognition and label prediction methods de-

pend entirely or primarily on pixel content and do not make

full use of commonly-available multimedia information to

aid in automatic image labeling. We hypothesize that using

social media context jointly with pixel information should

improve the state-of-the-art in image labeling. Furthermore,

we seek to understand the relative contribution of pixels,

text and other information in predicting image labels.
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We define our problem as an automatic image labeling

based on inferring content labels Y , conditioned on an im-

age I , and other related metadata information M . Our pro-

posed solution is illustrated in Figure 2, which introduces

a novel deep fully connected Conditional Random Field

framework (we call “DCRF”) that uses deep neural net-

works to compute the joint probability P (Y |I,M). CRFs

have been commonly used in image segmentation problems

where the model has one hidden node per pixel or grid-cell

and a vector of hidden nodes for a single image. Instead,

we abstract up one layer and define one hidden node per

image, instead of per pixel, over the entire dataset of im-

ages to form an image relationship graph. This results in

having the vector of hidden nodes over the whole dataset

with one node per image.

For pixel content descriptors, we exploitation popular

image classification CNNs to extract a visual feature vec-

tor for each image or CRF node. To incorporate image title,

comments, captions, and other text, instead of using high-

frequency words as tags [21, 12], we treat the text infor-

mation as an unorganized and incoherent sentence and then

fine-tune a popular network for sentence classification [15]

as a text-level neural network to extract text features. In

addition to textual similarity based on the text feature, we

use associative metadata such as user sets and image groups

to determine the edge weights in the fully connected CRF

graph.

Our fully connected CRF establishes pairwise potentials

on all pairs of images over the entire dataset. It com-

bines the strengths of both CNN and CRF based graphi-

cal models in a unified framework. Inspired by Zheng et
al. [33], we formulate a mean-field approximation infer-

ence [16] for the CRF and model it as a Recurrent Neural

Network (RNN). Hence our DCRF is an end-to-end CNN-

RNN framework, incorporating the advantages of both con-

volutional and recurrent neural networks while enabling

standard back-propagation during training for network pa-

rameter learning.

In the most closely related work, McAuley et al. [21]

has proposed a CRF framework using social-network meta-

data to solve the image labeling problem. Compared with

McAuley’s approach, we have two advantages. First, our

image-level CNN makes full use of the existing popular

CNN models to extract powerful visual features from im-

ages, which integrates of the advantages of CNN feature ex-

traction for nodes in the CRF. Second, rather than exploring

the relational model based on high-frequency co-occurring

words as tags, we exploit our text-level CNN and associa-

tive metadata to construct the fully connected CRF graph.

The experiment section shows that our method results in

significant performance improvement.

Our main contributions are summarized as follows:

• We propose a novel deep fully connected CRF frame-

work DCRF that uses deep neural networks for image

labeling with social network metadata. Deep CCN im-

age features are fused with text features and network

linkage information in an end-to-end deep learning for-

mulation.

• Instead of using high-frequency words as tags, we pro-

pose to use a text-level CNN to exploit textual informa-

tion. The fully connected CRF graph is built based on

the features extracted from the text-level convolutional

neural network, as well as the link-based metadata like

user sets and image groups.

• For both learning and inference, we model a mean field

approximation inference [16] for the fully connected

CRF as an RNN, to introduce the CNN-RNN formula-

tion. We also incorporate the weighted ranking loss to

handle the imbalance label distribution existing in the

training data.

• We evaluate the proposed DCRF on the MIR-

9K dataset and achieve significantly improved per-

formance compared to previous state-of-the-art ap-

proaches.

2. Related work
The related work can be divided into two categories: so-

cial media for labeling and CRF with deep neural networks.

Social media context for labeling. A set of tags associ-

ated with each image is commonly used in multimodal clas-

sification settings. Guillamumin et al. [7] explored the re-

lationship between tags and manual annotations to recover

annotations using a combination of tags and image content.

Lindstaedt et al. [20] and Sigurbjornsson et al. [26] stud-

ied the problem of recommending tags that were obtained

from similar images and similar users. Sawant et al. [24]

and Stone et al. [29] investigates friendship information

between users for tag recommendation in social networks.

EXIF and GPS are two commonly used sources of metadata

that come directly from the camera [22, 18, 14, 13]. Such

metadata can be used to help determine who captured the

photo and where, and also provide informative signals for

image labeling tasks. Our method differs from all these and

also [21] in that we use a much larger range of social media

information, including free-form text as well as links, with

deep learning based pixel descriptors incorporated into our

novel deep learning fully connected CRF framework.

CRF with deep neural networks. In recent years, there

are several works about CRF with a convolutional neu-

ral network which incorporate CRF to model structures in

both output and hidden feature layers in CNN. Chu Chao

et al. [5] propose a CRF-CNN framework which can si-

multaneously model structural information in both output
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and hidden feature layers in a probabilistic way, and ap-

ply it to human pose estimation. Shuai Zheng et al. [34]

introduce a new form of convolutional neural network that

combines the strengths of CNN and CRF-based probabilis-

tic graphical modeling. Zheng et al. [33] models condi-

tional random fields for image segmentation task as recur-

rent neural networks, with the node features extracted from

a convolutional neural network. Chandra et al. [2] propose

a structured prediction model that endows the Deep Gaus-

sian Conditional Random Field with a densely connected

graph structure. Chen et al. [3] propose a similarity learn-

ing approach for person re-identification by combining the

CRF model with deep neural networks. In these works,

CNNs are integrated into CRF models and perform as fea-

ture extractors. Similarly, the two CNNs (image-level CNN

and text-level CNN) in our proposed DCRF framework also

work as powerful feature extractors in image labeling us-

ing social metadata. However, in addition to this, our text-

level CNN is also used to help build the fully connected

CRF graph, and both the learning and inference is under

the united CNN-RNN framework, which distinguishes our

proposed DCRF from the existing approaches.

3. Proposed approach
In this section, we will describe in detail the proposed

Deep fully connected CRF framework (as illustrated in Fig-

ure 2) with deep neural networks.

3.1. CRF framework

Our probability framework is based on a fully connected

conditional random field (CRF). This captures both unary

dependencies between image labels, Y = {y1, y2, . . . , yN}
(with binary value indicating if the image has this class la-

bel, yn = 1 , or not, yn = 0), and the input features

(e.g., image features and metadata), as well as the pair-

wise dependencies between pairs of labels and the input fea-

tures to produce the conditional probability P (Y |I,M) =
P (Y |x,M), where x are the raw image features derived

from the image set I . The labels are treated as binary hid-

den nodes in the CRF and the image features x, and meta-

data M , are used in the observation nodes. Therefore, the

conditional probability of the fully connected CRF can be

defined as:

P (Y |I,M) = P (Y |x,M)

=
1

Z
exp(

N∑

i=1

A(yi,xi)

+
N∑

i=1

∑

∀j �=i

B(yi, yj ,M)),

(1)

where Z is the normalization constant that depends on x and

M , while A is the unary function based on the image infor-

mation x, and B is the pairwise potential function based on

the metadata M . The unary potentials are single image po-

tentials, while the pairwise potentials are between pairs of

images. For simplicity, a separate binary CRF model can be

learned for each category.

3.2. Unary function with image-level convolutional
neural network

The goal of the image-level convolutional neural net-

work (CNN) is to extract feature vectors that are compact,

representative, and can capture the most related visual in-

formation for the decoder. The rapid development of deep

convolutional neural networks have had great success in

large-scale image recognition task [9, 28], object detec-

tion [23, 4, 30] and visual captioning [31, 1, 32]. High-level

features can be extracted from upper or intermediate lay-

ers of a deep CNN network. Therefore, a set of well-tested

CNN networks can be used in our framework.

We use VGG-19 [27] and ResNet-152 network [9] for

our framework. In this paper, for each category, we modify

the original network by changing the number of outputs in

the last layer from 1000 to 2 and fine-tune to conduct the

binary classification. xi in Equation 1 is the feature vector

extracted from the second last fully connected layer (i.e., the

18-th layer in VGG-19 and the 151-th layer in ResNet-152)

for i-th instance. Then we can define the unary potential

function as

A(yi,xi) = wyi

A xi + byi

A , (2)

where yi is either 1 or 0, and wyi

A , byi

A are the parameters

we need to learn.

3.3. Pairwise potential with text-level convolutional
neural network and other meta information

Unlike previous work that tries to make full use of text

information in the metadata by exploring the co-occurrence

of high frequently used words as tags, we treat all the texts

including title, description and comments information asso-

ciated with an image as an unorganized incoherent sentence

or a bag of words. Then we can train a text-level convo-

lutional neural network to extract the feature vectors. In

principle, any sentence convolutional neural networks can

be used in our framework. To make it simple, we use Kim’s

sentence network [15], which is composed of one convolu-

tional layer, one pooling layer, one dropout layer, one fully-

connected layer and output with softmax activation func-

tion.

In this paper, we extract the 128-dimensional dropout

layer to measure the similarity between any two images at

the text-level. We define text similarity as

Stext(i, j) = exp(−|x
text
i − xtext

j |2
2θtext

), (3)

where the degree of nearness and similarity is controlled by

the θtext parameter.
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Figure 2: The pipeline of the proposed Deep fully connected CRF framework with deep neural networks for image labeling

using social network metadata. The node features are extracted from an image-level convolutional neural network (CNN),

and the edges are built based on the textual similarity based on the feature extracted from a text-level CNN, as well as the

similarity determined by link-based metadata like user sets and image groups. For both learning and inference, we resort

to a mean field approximation inference [16] for the CRF and model it as an RNN. We learn the parameter via a stochastic

gradient descent RMSProp under the united CNN-RNN framework. Based on the learned CNN-RNN framework, we can

predict the final 24-dimensional binary label vector directly at the testing stage.

Besides the text information, we also use the link-based

metadata such as user sets and image groups [12]. A user

set associates with a collection of images uploaded or col-

lected by the same user. Image groups are community-

curated, and are usually images belonging to the same con-

cept, scene or event are uploaded and shared by the social

network users. Both user sets and image groups have vo-

cabularies, i.e., Tset and Tgroup, and each image xi has two

subsets, tseti and tgroupi . We calculate the distance between

any two nodes/images using the Jaccard similarity between

their user sets and image groups as:

d(i, j,Mset) = 1− |tseti ∩ tsetj |/|tseti ∪ tsetj |,
d(i, j,Mgroup) = 1− |tgroupi ∩ tgroupj |/|tgroupi ∪ tgroupj |

and get the corresponding similarities

Sset(i, j) = exp(−d(i, j,Mset)
2

2θset
), (4)

Sgroup(i, j) = exp(−d(i, j,Mgroup)
2

2θgroup
), (5)

where both θset and θgroup are the parameter to control the

degree of similarity.

Intuitively, two nodes/images which are more similar are

more likely to share the same labels and should be able to

affect each other more than others. Therefore, similarity is

close related to the pairwise potential and we can define the

pairwise potential as

B(yi, yj ,M)) = μ(yi, yj)
∑

k∈{text,set,group}
wk

BSk(i, j),

(6)

where μ(·, ·) is label compatibility function, and wtext
B ,

wset
B , wgroup

B are the 2 × 2 parameters to be learned from

the training data.

3.4. Learning and inference under neural network

Both image-level CNN and text-level CNN are trained

separately. With the pre-trained networks, we are able to ex-

tract the node features and textual features to build the fully

connected CRF, in which we also take user sets and image

groups into account. Unfortunately, the parameters θtext,
θset and θgroup cannot be calculated efficiently since their

gradients involve a sum of non-Gaussian kernels, which are

not amenable to the same acceleration techniques. There-

fore, we resort to take grid search on a holdout validation

set for determining all these three parameters, and learn the

parameter w = [wA,wB ], bA and μ(·, ·) only.

Algorithm 1: The outline of our proposed DCRF algo-

rithm
Input: I and M
Output: Q

1 x← CNNimage(I)
2 xtext ← CNNtext(M)
3 tset, tgroup ←M
4 U ← wAx+ bA

5 Qi(y)← 1
Zi

exp {Ui(y)}
6 while not converged do
7 Q̃

(k)
i (y)← ∑

∀j �=i

Sk(i, j)Qj(y) for all k

8 Q̌i(y)←
∑
k

wk
BQ̃

(k)
i (y)

9 Q̂i(y)←
∑
y′

μ(y, y′)Q̌i(y)

10 Q̆i(y)← Ui(y)− Q̂i(y)

11 Qi(y)← 1
Zi

exp {Q̆i(y)}
12 end
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We resort to a mean field approximation inference [16]

which computes a distribution Q(X) that minimizes the

KL-divergence D(Q||P ) among all the approximated dis-

tributions Q that can be expressed as a product of indepen-

dent marginals, Q(X) =
∏

i Qi
1 and

Qi(y) =
1

Zi
exp {−wy

Axi −Q′i(y)}, (7)

where

Q′i(y) =
∑

y′
μ(y, y′)

∑

k∈{text,set,group}
wk

B

∑

∀j �=i

Sk(i, j)Qj(y).

The update equation in Equation 7 leads to the inference

steps, as seen in Algorithm 1. Inspired by the spirits in

Zheng et al.’s work [33], we can implement the algorithm

as a combination framework with both CNN and RNN. To

be specific, line 1 and line 2 are associated with image-level

CNN and text-level CNN, respectively. Line 3 can be re-

garded as a pre-processing step. Line 4 can be modeled as a

fully connected layer. Line 5 is a softmax layer with unary

potential as input. Line 7 can be regarded as linear combi-

nation of matrix multiplications, since the parameters θtext,
θset and θgroup are determined by grid search validation and

therefore Sk(·, ·) is fixed during running the algorithm 1.

Line 8 can be implemented as a convolution with a 1x1 fil-

ter with three input channels and one output channel. Line 9

is another convolutional layer in which the number of both

input and output channels are both two for the binary classi-

fication case. Line 10 is element-wise subtraction from the

unary potential Ui. Line 11 is another softmax layer. Obvi-

ously, the layers associated with line 7 to line 11 construct

a recurrent neural network (RNN).

Both learning and inference can be conducted under the

united CNN-RNN framework which we implement in Py-

Torch. For the loss function, besides the L2 regularization

on wA, we use weighted binary cross entropy and pairwise

ranking loss

Loss(Q, Y ) =
N∑

i=1

− yi
N+

logQi(yi)− 1− yi
N−

logQi(1− yi)

+
N∑

i=1

yi
N+

(1− (Qi(yi)−Qi(1− yi))

+
N∑

i=1

1− yi
N−

(1− (Qi(1− yi)−Qi(yi)) + λ‖wA‖2,

(8)

to handle the possible imbalance distribution of posi-

tive/negative instances in the training data and ensure a

1For simplicity, we use Qi to indicate Q(xi) and therefore Qi(y) in-

dicate the probability of xi being labeled as label y.
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Figure 3: The number of instances per category used for

both training and testing among 24 categories on the full

MIR-9K dataset.

good probability ranking. Note that N+ and N− in Equa-

tion 8 are the number of positive training instances and the

number of the negative training instances, respectively. λ
is the regularization parameter and we set 0.1 for VGG-19

and 0.001 for ResNet-152. We initialize all parameters us-

ing the method of [8] and optimize using stochastic gradient

descent RMSProp with a fixed learning rate of 0.1.

4. Experiment
We conduct experiments to verify the effectiveness of the

proposed approach on the MIR-9K dataset, a subset of the

MIRFLICKR [11] dataset which is available under Creative

Commons licenses. It worths mentioning here that we do

not evaluate on datasets like NSU-WIDE dataset [25] since

there are only tag words available on the official website,

without the original text information (e.g., image title, de-

scription and comments), which prevent us from evaluating

our text-level CNN in Section 3.3. The MIR-9K dataset

contains 6000 training instances and 3182 testing instances

with 24 categories: animals, baby, bird, car, clouds, dogs,

female, flower, food, indoor, lake, male, night, people, plant

life, portrait, river, sea, sky, structures, sunset, transport,

tree, and water. It involves a set of 3,213 users, a collection

of 34,942 words and 17,687 image groups. The data dis-

tribution is shown in Figure 3, where there are imbalance

issues among different categories.

For measurement metrics, we report the average preci-

sion (AP), recall, precision and accuracy over all 24 cat-

egories for the sake of comparison with published algo-

rithms.

4.1. Effectiveness of the text-level CNN

To evaluate the effectiveness of the text-level CNN to our

proposed DCRF, we first define the CRF only with the tex-

tual similarity defined in Equation 3, and denote the method
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CNN-Text VGG-19 DCRF-Tag DCRF-Text

27.97

73.50 73.78 74.33

(a) AP

CNN-Text VGG-19 DCRF-Tag DCRF-Text

25.39

73.38

86.15

95.71

(b) Recall

CNN-Text VGG-19 DCRF-Tag DCRF-Text

32.76

55.73

85.02 85.62

(c) Precision

CNN-Text VGG-19 DCRF-Tag DCRF-Text

82.47

88.71 90.06
92.20

(d) Accuracy

Figure 4: The comparison result with node features extracted from the VGG-19 network on the MIR-9K dataset (unit: %).

CNN-Text Resnet-152 DCRF-Tag DCRF-Text

27.97

71.59
73.76 74.20

(a) AP

CNN-Text Resnet-152 DCRF-Tag DCRF-Text

25.39

76.54

88.34

98.09

(b) Recall

CNN-Text Resnet-152 DCRF-Tag DCRF-Text

32.76

52.81

70.27

80.75

(c) Precision

CNN-Text Resnet-152 DCRF-Tag DCRF-Text

82.47

87.61
91.05 92.13

(d) Accuracy

Figure 5: The comparison result with node features extracted from the ResNet-152 network on the MIR-9K dataset (unit:

%).
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Figure 6: Visualization of top 20 tag words appearing in 4

categories on the positive training instances of the MIR-9K

dataset.

as DCRF-Text. We then replace the textual similarity with

the tag Jaccard similarity calculated in [12] (with 5000 high

frequent occurring words as tags) for any two nodes/images

to build the CRF, and mark the competing algorithm as

DCRF-Tag. Note that both DCRF-Text and DCRF-Tag use

the same visual node features obtained from the VGG-19

or ResNet-152 network. We also provide two baselines that

use text information and image information independently,

i.e., CNN-Text, VGG-19, and ResNet-152, respectively.

The performance results are summarized in Figure 4

and 5. As we can see, (a) both VGG-19 and ResNet-152

perform much better than CNN-Text in AP, recall, preci-

sion, and accuracy, which indicates image information is

more helpful for image labeling when compared with the

text information. (b) Also, both DCRF-Text and DCRF-Tag

work better than CNN-Text, VGG-19 and ResNet-152 in

all four metrics, which indicates the text information com-

plementary to image information and useful for improving

the labeling accuracy. (c) Regardless of using the VGG-19

or ResNet-152 network to extract the node/image features,

DCRF-Text outperforms DCRF-Tag, which clearly demon-

strate that the text-level CNN of our DCRF is better able to

explore the underlying information in text than just relying

on the top frequent words as tags.

To analyze why our proposed DCRF-Text is able to out-

perform DCRF-Tag, we visualize the top 20 words in de-

creasing order of frequency occurring among 6000 training

examples. Due to space limitations, we only present 4 cat-

egories in Figure 6. For more information, please refer to

our supplementary. We observe that the top frequently co-

occurring words such as “love”, “photo”, “great”, “group”,

“added”, “nice” et. al convey little information relative to

any of the prediction 24 categories. Instead, we resort to a

text-level CNN to explore the underlying information and

use the textual similarity based on the features extracted

from the text-level CNN to build the fully connected CRF

graph, which explains why our proposed approach DCRF

makes slightly better use of text information.

4.2. Effectiveness of the metadata for image labeling

In Section 4.1, text information has been proved to able

to boost the performance for the image labeling accuracy.

We also want to see whether the link-based metadata such

as user sets and image groups, can produce positive effect

on the image labeling. Using the same node features ex-

tracted from either the VGG-19 or ResNet-152 network, we

first define the CRF graph with a single type of metadata

(i.e., text, user sets and image groups) and get three versions

of DCRF: DCRF-Text, DCRF-Set and DCRF-Group. Then

we define the CRF with the combined these three types

of metadata together, and denote the combined version as
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DCRF-TSG.
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Figure 7: The comparison result with node features ex-

tracted from the VGG-19 and ResNet-152 networks (unit:

%).

We summarize the results in Figure 7. As we expect,

each of all these DCRF-Text, DCRF-Set and DCRF-Group

perform better than VGG-19 and ResNet-152, which sug-

gests that all these three types of metadata are helpful for

image annotation. Among these three types of metadata,

using text information provides the greatest improvement

in AP compared to the other two. However, combining all

three types into the DCRF-TSG model produces the great-

est performance in all four metrics, regardless of using the

VGG-19 or ResNet-152 network as node feature extrac-

tor. Such observations demonstrate that the metadata as

text, user sets, and image groups are complementary to each

other and can be used for boosting the quality of image la-

beling.

4.3. Compare with state-of-the-art approach

In addition to the text-level CNN model

CNNtext [15], and four image-level popular CNN models

AlexNetimg [17], VGG-19img [27], ResNet-152img [9]

and DenseNet-201img [10], we compare our proposed

DCRF with the most closely related work, i.e., McAuley et
al’s CRF algorithm [21], denoted as McAuley-CRF, which

explores the social-network metadata such as image groups

and comments, and utilizes structured learning techniques

to learn model parameters. We also compare with one deep

learning related work, i.e., Johnson et al’s neighbor-based

CNN algorithm [12], denoted as Johnson-NCNN, which

use image metadata in a nonparametric manner to generate

neighborhoods of related images using Jaccard similarity

and then uses a deep learning to blend visual information

from the image and its neighbors.

Table 1: The performance comparison among the compet-

ing algorithms (AP: average precision, REC: recall, PRE:

precision, ACC: accuracy, unit: %).

AP REC PRE ACC

CNNtext [15] 27.97 25.39 32.76 82.47

AlexNetimg [17] 62.54 76.30 40.25 74.56

VGG-19img [27] 73.50 77.38 55.73 88.71
ResNet-152img [9] 71.59 76.54 52.82 87.62

DenseNet-201img [10] 63.26 72.55 42.93 85.06

McAuley-CRF [21] 54.73 40.75 59.44 83.1

John-NCNNvgg [12] 73.78 61.18 79.01 92.57
John-NCNNres [12] 72.90 50.59 81.39 91.87

DCRFvgg-BCE 74.13 92.66 85.86 92.50

DCRFvgg-RLoss 74.29 93.12 88.18 92.61

DCRFvgg-BCE+RLoss 74.36 99.20 88.66 92.78
DCRFres-BCE 74.05 91.52 74.69 91.74

DCRFres-RLoss 74.09 94.38 77.59 91.93

DCRFres-BCE+RLoss 74.26 99.49 83.21 92.77

For fair comparison, we provide two versions of

deep learning models (i.e., the VGG-19 and ResNet-

152 networks) for Johnson-NCNN, and mark them as

Johnson-NCNNvgg and Johnson-NCNNres, respectively.

Obviously, our DCRF has two versions, i.e., DCRFvgg

and DCRFres. To better show the effectiveness of the

loss function we use in Section 3.4, we get six versions,

i.e., DCRFvgg-BCE, DCRFres-BCE, DCRFvgg-RLoss,

DCRFres-RLoss, DCRFvgg-BCE+RLoss, DCRFres-

BCE+RLoss, in which “BCE” indicates binary cross

entropy and “RLoss” means pairwise ranking loss in the

binary classification cases.

The results are summarized in Table 1, from which we

can observe: (a) all four image-level CNNs perform bet-

ter CNNtext, and VGG-19 and ResNet-152 are the top 2

image-level CNN models on the MIR-9K dataset; (b) our

proposed DCRF significantly outperforms the McAuley-

CRF approach, which shows the big advantages of using

deep neural networks in CRF; (c) with the same deep node

features extracted from either the VGG-19 or ResNet-152

network, all versions of our DCRF are able to obtain im-

provement in all four metrics when compared to using tex-
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Figure 8: Visualization of image labeling on some testing examples. For each example, the title is above the image,

and the text below the image is the corresponding description. The bottom four rows are prediction labels by VGG-19,

John-NCNNvgg , DCFRvgg and the corresponding ground-truth labels.

tual or visual information only; (d) rank loss function works

a little better than cross entropy loss function in all four

metrics; (e) the performance of our DCRFvgg-BCE+RLoss

and DCRFres-BCE+RLoss are slightly higher than those

of John-NCNNvgg and John-NCNNres in AP and accuracy

and significantly higher in recall and precision, and our

DCRFvgg-BCE+RLoss achieves the best performances in

AP, precision and accuracy.

4.4. Visualization

For better understanding of our porposed DCRF, we

visualize some testing examples with DCRFvgg and take

VGG-19 and John-NCNNvgg as baselines in Figure 8. As

we can see, both DCRFvgg and John-NCNNvgg benefit

from the metadata information for improving the quality of

image labeling. Overall, our proposed DCRF achieves the

higher quality of labels. Moreover, our proposed DCRFvgg

is able to predict some categories that are not clear or even

occluded in images, such as “car” and “tree” in the middle

two examples at the bottom row.

5. Conclusion
In this paper, we propose a novel deep fully connected

CRF based framework DCRF with deep neural networks

for image labeling using social network metadata. In such

a framework, CNNs are used to extract powerful visual

features for nodes/images and textual features to explore

the underlying information embedded in text. The fully

connected CRF graph is built based on the textual simi-

larity and the link-based metadata like user sets and im-

age groups. With the mean-field approximation modeled

as an RNN, our proposed framework DCRF becomes a

joint end-to-end CNN-RNN formulation, which combines

the strengths of both CNNs and RNNs. The experimen-

tal evaluation on the MIR-9K dataset demonstrates that our

proposed DCRF framework outperforms state-of-the-art ap-

proaches [21, 12]. Our future work includes investigating

more effective meta information, and improving the effi-

ciency of the current DCRF framework to handle more com-

plicated real-world application problems.
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