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Abstract

Images can be manipulated for nefarious purposes to

hide content or to duplicate certain objects through copy-

move operations. Discovering a well-crafted copy-move

forgery in images can be very challenging for both humans

and machines; for example, an object on a uniform back-

ground can be replaced by an image patch of the same back-

ground. In this paper, we propose a Generative Adversarial

Network with a dual-order attention model to detect and

localize copy-move forgeries. In the generator, the first-

order attention is designed to capture copy-move location

information, and the second-order attention exploits more

discriminative features for the patch co-occurrence. Both

attention maps are extracted from the affinity matrix and

are used to fuse location-aware and co-occurrence features

for the final detection and localization branches of the net-

work. The discriminator network is designed to further en-

sure more accurate localization results. To the best of our

knowledge, we are the first to propose such a network ar-

chitecture with the 1st-order attention mechanism from the

affinity matrix. We have performed extensive experimental

validation and our state-of-the-art results strongly demon-

strate the efficacy of the proposed approach.

1. Introduction

The content of digital images can be easily manipulated

or forged as there are many image editing tools like GIMP

or Adobe Photoshop. Such manipulations can be done for

nefarious purposes to either hide or duplicate an object or

similar content in the original images. A copy-move im-

age forgery refers to a type of image manipulation where a

source region is copied to another location within the same

image. As two real-world examples in Figure 1, copy-move

image forgery could be used to add or hide some objects

∗This work was supervised by Chengjiang Long when Ashraful Islam

was a summer intern at Kitware, Inc.

Figure 1: Two examples of copy-move forgery with ob-

ject cloning (top) and object removal (bottom). From

left to right are original, forged, and ground-truth images.

Our goal is to automatically detect and localize the source

(green) and the target (red) regions in forged images.

appearing a digital image, leading to a different interpreta-

tion. If such a manipulated image was part of a criminal

investigation, without effective forensics tools the investi-

gators could be misled. Therefore, it is crucial to develop

a robust image forensic tool for copy-move detection and

localization.

A number of copy-move detection approaches are al-

ready available including various traditional patch/block-

based methods [8, 32, 17], keypoint-based methods [49,

33], irregular region-based methods [19, 36], and a few re-

cent deep learning approaches [44, 22, 46]. Although some

copy-move detection methods have been able to generate

reasonable localization result, but the results of these ap-

proaches are still far from perfect on some of the more chal-

lenging scenarios. As shown in Figure 1, it is very challeng-

ing to distinguish copy-moves from incidental similarities,

which occur frequently.

In this paper, we propose a dual-order attentive Gen-

erative Adversarial Network (DOA-GAN) for copy-move

forgery detection and localization. As illustrated in Fig-

ure 2, the generator is an end-to-end unified framework

based on a deep convolutional neural network. Given an

input image, we calculate an affinity matrix based on the
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extracted feature vectors at every pixel. We design a dual-

order attention module to produce the 1st-order attention

map A1, which is able to explore the copy-move aware

location information, and the 2nd-order attention map A2

to capture more precise patch inter-dependency. The final

feature representation is formulated with these two atten-

tion maps, and then fed into a detection branch to output

a detection confidence score and a localization branch to

produce a prediction mask in which the source region and

target/forged region are distinguished. Meanwhile, the dis-

criminator is designed to check whether the predicted mask

is identical to ground-truth or not.

Intuitively, the dual-order attention module is designed

to first highlight all similar regions in the image, regard-

less of whether or not they are manipulated; and then differ-

entiate non-manipulated, similar regions from copy-move

(source and target) regions. Typically, source and target re-

gions in copy-move forgeries are more pixel-wise similar

than incidentally similar regions, even after transformations

such as rotation and scaling.

Our dual-order attention module is calculated based on

the affinity matrix, which covers 2nd-order statistics of fea-

tures and plays a critical roles for more discriminative rep-

resentation [20, 9]. This motivates us to exploit the second-

order co-occurrence attention map A2 for the fine-grained

distinctions necessary to distinguish copy-move forgeries

from incidental object and texture similarities. Also, we

observed that the high values in off-diagonal elements in-

dicate high likelihood for copy-move spatial relations be-

tween the patches. This observation inspired us to explore

the 1st-order attention map A1 to focus on the copy-move

region aware feature representation. In this paper, we refine

and normalize the affinity matrix, taking the top-k values

for each column and reshape them to form a 3D tensor with

k channels. The tensor is then fed into simple convolutions

to formulate our final 1st-order attention map A1 which is

able to give more attention to the source and target region.

To the best of our knowledge, we are the first to extract such

a 1st-order attention map from the affinity matrix.

We adopt the adversarial training process [13, 10, 43, 50]

between the generator and the discriminator to generate a

more accurate localization mask. As the number of epochs

increases, both the generator and the discriminator improve

their functionality so that the predicted mask iteratively be-

comes just like the ground-truth mask. Therefore, a suf-

ficiently large number of epochs leads to convergence in

training, and we use the learned parameters in the generator

to output a detection confidence score and the predicted lo-

calization mask indicating source and target/forged regions.

To summarize, our contributions are three-fold. (1) We

propose a dual-order attentive Generative Adversarial Net-

work for image copy-move forgery detection and localiza-

tion. (2) Our 1st-order attention module is able to extract the

copy-move location aware attention map and the 2nd-order

attention module explores pixel-to-pixel inter-dependence.

These two attention maps provide more discriminative fea-

ture representations for copy-move detection and localiza-

tion. (3) Extensive experiments strongly demonstrate that

the proposed DOA-GAN clearly outperforms state-of-the-

art approaches in terms of both detection and localization

quality on multiple benchmark datasets.

2. Related work

Copy-move forgery detection and localization. A

typical copy-move forgery detection approach [8] is com-

posed of three stages: feature vector extraction, corre-

spondence matching from the feature representation, and

post-processing to reduce false alarms and improve detec-

tion rates. Patch/block-based methods include chroma fea-

tures [3, 8], PCA feature [17], Zernike moments [39], blur

moments [31], DCT [32]; keypoint-based methods such as

SIFT [1, 7, 49], ORB [51], triangles [2], SURF [33, 40], and

irregular region-based methods [19, 36]. Many traditional

copy-move detection algorithms rely on strong assumptions

about specific image characteristics like edge sharpness and

local features. However, such assumptions are not always

satisfied in the forged images, since other transformations

like compression, resampling, or geometric transformations

may hide traces of the manipulation.

Recently, deep neural networks (DNNs) have been ap-

plied to visual recognition [25, 16, 29, 28, 26, 27, 15], ob-

ject detection and segmentation [14, 5, 30], as well as im-

age and video forgery detection research [22, 14, 44, 29, 46,

24, 47, 4]. Especially, Wu et al. [46] introduced an end-to-

end DNN solution to detect copy-move forged images with

source/target localization with two separate branches. Un-

like these DNN methods, our proposed DOA-GAN formu-

lates both detection and localization as an end-to-end uni-

fied framework in the Generator network, where the 1st-

order attention and the 2nd-order attention significantly im-

prove the detection and localization performance.

Attentive Generative Adversarial Networks. Atten-

tion mechanisms have been successfully used in Generative

Adversarial Networks [10, 48, 37]. Unlike the existing at-

tentive GANs, the dual-order attention module in our DOA-

GAN is dependent on the affinity matrix calculated from

contextual feature representation.

3. Method

The framework of the proposed approach is illustrated in

Figure 2. The generator is an end-to-end unified framework

to conduct both copy-move manipulation detection and lo-

calization tasks. Given an input image I , we first apply

the first four blocks of a VGG-19 network to extract hier-

archical features and resize them to the same size to form a
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Figure 2: The overview of DOA-GAN. The generator is an end-to-end unified framework to conduct both detection and

localization tasks. The discriminator is designed to check whether the predicted mask is identical to ground-truth or not.

concatenated feature Fcat. Then an affinity matrix is calcu-

lated, and the 1st-order attention map A1 and the 2nd-order

attention map A2 are obtained via a dual-order attention

module. Two atrous spatial pyramid pooling (ASPP) oper-

ations, i.e., ASPP-1 and ASPP-2, with different parameters,

are applied to extract contextual features F 1
aspp and F 2

aspp,

which are multiplied element-wise with A1 to get the pos-

sible copy-move regions attentive features F 1
attn and F 2

attn.

A2 is then used to obtain co-occurrence features F 1
cooc and

F 2
cooc. Both region attentive features and co-occurrence fea-

tures are fused for the detection branch to produce a detec-

tion output score and for the localization branch to generate

a mask. The discriminator is designed to check whether the

predicted mask is identical to the ground-truth or not. The

alternative training between the generator and the discrimi-

nator is a key component of this approach and enables more

accurate results.

3.1. Generator Network

Given an image I ∈ R
H×W×3, we extract feature repre-

sentations of the image by feeding it to the first three blocks

of a VGG-19 as feature extractor and then resize the three

hierarchical features to the same size to get the concatenated

feature Fcat ∈ R
h×w×d. For time efficiency, we set h = H

8 ,

w = W
8 in this paper. After feature extraction, to explore

the correlation between different parts of the image, we cal-

culate the affinity matrix

S = F ′

catF
′T
cat, (1)

where F ′

cat ∈ R
hw×d is a flattened matrix representation of

Fcat and represents h× w patches of the same size.

The Dual-Order Attention Module is designed as

shown in Figure 3 to extract the copy-move aware region

attention map A1 and the co-occurrence attention map A2.

However, as we are calculating self-correlation of an image,

S will have higher values along the diagonal, as the diago-

nal values indicate the correlation of a part of the image with

itself. To resolve this issue, we define an operation G

G(i, j, i′, j′) = 1− exp(
(i− i′)2 + (j − j′)2

2σ2
) (2)

Figure 3: The dual-order attention module to obtain the

copy-move region attention map A1 and the co-occurrence

attention map A2.

and reshape it into hw × hw. G reduces the correlation

score between the same parts of the image using a Gaussian

kernel. After that, we get the new affinity matrix S′ = S ⊙

G, where ⊙ denotes the element-wise product.

Leveraging the patch-matching strategy from [6], we cal-

culate the likelihood that a patch in the i-th row matches

with a patch in the j-th column in S′ by

Lr(i, j) =
exp(αS′[i, j])

∑hw

j′=1 exp(αS
′[i, j′])

, (3)

Lc(i, j) =
exp(αS′[i, j])

∑hw

i′=1 exp(αS
′[i′, j])

, (4)

L(i, j) = Lr(i, j)Lc(i, j), (5)

where α is a trainable parameter that is initialized as 3. L is

the final affinity matrix.

From L ∈ R
hw×hw, we extract the top-k values for each

row, and reshape into T ∈ R
h×w×k. We feed T into an

attention module. The attention module consists of three

convolution blocks. The first two blocks contain convolu-

tion layers with 16 output channels and kernel size 3, fol-

lowed by BatchNorm and ReLU. The final block contains

two consecutive convolution layers with 16 output channels

and kernel size 3, and 1 output channel and kernel size 1, re-

spectively. We finally apply a sigmoid function to obtain the

spatial copy-move aware attention map A1 ∈ R
h×w. As il-

lustrated in Figure 4, the copy-move region attention map is

generated by suppressing the background non-manipulated

regions while highlighting the regions most likely involved

in a copy-move manipulation.
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Figure 4: Visualization of A1 on two copy-move forgery

images.

To make full use of the patch-to-patch inter-dependence,

we normalize the affinity matrix in Equation 5 to obtain co-

occurrence attention map A2 ∈ R
hw×hw,

A2(i, j) =
L(i, j)

∑hw

j′=1 L(i, j
′)
. (6)

Atrous Spatial Pyramid Pooling (ASPP) Block is used

to extract contextual feature from the extracted features

Fcat. ASPP block is utilized in DeepLab V3 [5] to cap-

ture context at several ranges for image segmentation. We

found through experiments that two ASPP blocks are useful

to learn two different tasks, namely source and target detec-

tion. The first ASPP block has atrous rates 12, 24 and 36,

and the second block has atrous rates 6, 12 and 24. After

the ASPP modules, we obtain two feature representations

F 1
aspp ∈ R

h×w×ds and F 2
aspp ∈ R

h×w×ds .

Feature Fusion is designed to merge both copy-move

region aware attentive features and co-occurrence features

for the detection and localization tasks. We multiply F 1
aspp

and F 2
aspp with the spatial copy-move region aware atten-

tion map A1, and get

F 1
attn = F 1

aspp ⊙A1, (7)

F 2
attn = F 2

aspp ⊙A1, (8)

where ⊙ is the element-wise product operation. We also

obtain the co-occurrence features

F 1
cooc = A2 ⊗ F 1

attn, (9)

F 2
cooc = A2 ⊗ F 2

attn, (10)

where ⊗ is the matrix product operation. Such a treatment

fully explores the inter-dependence between patches, and

distant pixels are able to contribute to the feature response

at a location based on similarity metrics.

The final feature representation is merged based on the

above four features and attention map A1,

Ffinal = Merge(F 1
attn, F

2
attn, F

1
cooc, F

2
cooc, A1), (11)

where Merge is merge operation. In principle, any kind of

merge operation can be used, we used concatenation in this

paper.

Detection Branch and Localization Branch. With the

final representation Ffinal, we design two convolution lay-

ers followed by two fully connected layers as the detec-

tion branch to output a detection score. At the same time,

Ffinal is fed into the localization branch, which consists of

three convolution blocks, each followed by BatchNorm and

ReLU, and a final convolution block of 3 channels to output

the segmentation mask of pristine (background), source and

target regions.

3.2. Discriminator Network

The structure of the discriminator is based on the Patch-

GAN discriminator [18]. Specifically, the discriminator is

designed to predict whether each N ×N patch in the image

is real or fake. The discriminator is fully convolutional. It

consists of five convolution blocks, each followed by Batch-

Norm and LeakyReLU, and a final convolution layer. The

output channels of the consecutive convolution layers are

32, 64, 128, 256, 512, and 1, respectively, and the kernel

size for all the convolution layers is 4 × 4. The stride of

the convolution layers is 2 except the last one, which has a

stride of 1. Therefore, as the input image is passed through

each convolution block, the spatial dimension is decreased

by a factor of two, and finally we get an output feature of

size H
25 ×

W
25 ×1, where the spatial size of the input is H×W .

The input to the discriminator network is the concatenation

of the image I ∈ R
H×W×3 and mask M ∈ R

H×W×3. The

discriminator is trained to discern the ground-truth mask

from the predicted mask, while the generator tries to fool

the discriminator.

3.3. Loss Functions

The loss function is formulated with adversarial loss,

cross-entropy loss, and detection loss as:

L = Ladv + αLce + βLdet. (12)

Adversarial Loss Ladv is defined as:

Ladv(G,D) =E(I,M)[log(D(I,M)) + log(1−D(I,G(I))],
(13)

where the discriminator D tries to maximize the objective,

and the generator G tries to minimize it, i.e.,

G∗ = argmin
G

max
D

Ladv(G,D). (14)

Cross-Entropy Loss Lce is expressed as:

Lce =
1

H ×W × 3

3∑

k=1

H∑

i=1

W∑

j=1

M(i, j, k) log M̂(i, j, k),

(15)

where M̂ = G(I) is the predicted mask of the generator

network, and M is the ground-truth mask.

Detection Loss Ldet is the binary cross-entropy loss be-

tween the image-level detection score from the detection

branch and ground truth label,

Ldet = yim log(ŷim) + (1− yim) log(1− ŷim), (16)
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Table 1: The copy-move forgery localization results on the USC-ISI CMFD dataset using pixel-level precision, recall, and

F1 score metrics for 3 classes: P, S, and T referring to Pristine, Source and Target, respectively.

Methods
Precision Recall F1

P S T P S T P S T

BusterNet [46] 93.71 55.85 53.84 99.01 38.26 48.73 96.15 40.84 48.33

ManTra-Net [47] 93.50 8.66 48.53 99.22 2.28 28.43 96.08 2.97 30.58

U-Net [38] 91.66 32.67 47.16 97.16 19.06 40.90 94.88 23.09 44.15

NA-GAN 95.87 35.30 59.32 96.91 41.64 52.32 95.40 33.25 55.94

FOA-GAN 95.06 52.82 71.17 97.24 43.32 62.06 96.04 43.43 65.90

SOA-GAN 95.53 50.94 70.20 98.17 40.86 66.58 97.80 42.50 67.19

DOA-GAN w/o ASPP-1 96.71 61.04 70.94 98.84 43.13 66.69 97.67 45.04 67.23

DOA-GAN w/o ASPP-2 96.08 60.70 65.20 99.43 39.18 68.76 97.62 44.13 65.41

DOA-GAN w/o Ladv 95.80 72.30 83.60 96.27 60.32 79.10 96.01 63.25 80.45

DOA-GAN w/o Ldet 97.35 75.58 83.96 97.98 64.19 80.31 97.51 65.21 81.08

DOA-GAN 96.99 76.30 85.60 98.87 63.57 80.45 97.69 66.58 81.72

where yim is set to 1 if the image contains copy-move

forgery, otherwise it is set to 0, and ŷim is the output from

the detection branch.

3.4. Implementation Details

The feature extraction module is based on the first three

blocks of the VGG-19 network pretrained on the ImageNet

dataset. The ASPP blocks are based on those used in

DeepLabV3+ [5]. We used k = 20 for the top-k value in

the 1st attention block.

We use two different learning rates for the generator and

the discriminator networks, 0.001 and 0.0001, respectively,

and the learning rate of the VGG-19 feature extractor is set

to 0.0001. We decrease the learning rate by half when the

training loss plateaus after 5 epochs. For training, we first

optimize only the cross-entropy loss of the generator for 3

epochs, and then start optimizing all the losses. When the

discriminator loss decreases to 0.3, we freeze the discrimi-

nator until the loss increases. This ensures that both the gen-

erator and the discriminator are learning at a similar pace,

and the discriminator does not over-train.

4. Experimental Results

To study the effectiveness of the proposed DOA-GAN

approach for copy-move forgery detection and localization,

we conducted experiments on three benchmark datasets:

the USC-ISI CMFD dataset [46], the CASIA CMFD

dataset [46], and the CoMoFoD dataset [41].

The USC-ISI CMFD dataset has 80K, 10K, and 10K
images for training, validation, and testing, respectively.

The CASIA CMFD dataset contains 1, 313 forged images

and their authentic counterparts (in total 2, 626 samples).

The CoMoFoD dataset contains 5, 000 forged images, with

200 base images and 25 manipulation categories covering 5
manipulations and 5 post-processing methods.

For evaluation of detection and localization perfor-

mance, we report image-level (for detection) and pixel-level

(for localization) precision, recall, and F1 score metrics for

3 classes: Pristine (background), Source, and Target, by av-

eraging the score of each image. The unit is %.

4.1. Experiments on the USCISI CMFD dataset.

We train DOA-GAN with 80, 000 copy-move forged im-

ages from USC-ISI dataset and 80, 000 pristine images, and

evaluate on the 10, 000 testing forged images and 10, 000
pristine images. The pristine images are collected from

COCO dataset [21]. We compare against BusterNet [46]

as a baseline, because to the best of our knowledge, this

is the only deep learning model that is able to distinguish

between the copy-move source and target regions. To val-

idate the effectiveness of the discriminator, we design sev-

eral baselines, ManTra-Net [47], U-Net [38], DOA-GAN

without any attention (denoted as NA-GAN), baselines us-

ing the 1st-order or 2nd-order attention only (denoted as

FOA-GAN and SOA-GAN, respectively). We also created

other baselines denoted as “DOA-GAN w/o Ladv” (equiva-

lent to DOA-CNN), and “DOA-GAN w/o Ldet”, by remov-

ing the loss functions Ladv, and Ldet in Equation 12, respec-

tively.

For pixel-level evaluation, we compute an average of

precision, recall, and F1 score metrics for each image. As

F1 score is ill-defined for pristine images, the testing images

for pixel-level evaluation include only the forged images.

For image-level evaluation, we use both forged images and

non-forged images (total 20K images). We predict an im-

age to be forged if the output score from detection branch is

greater than 0.5, otherwise it is predicted to be non-forged.

For BusterNet and DOA-GAN w/o Ldet, an image is con-

sidered forged if there are more than 200 pixels from the

output mask predicted to be source or target regions. It is

worth mentioning here that 200 pixels (< 0.2% of the total

pixels in an input image of the size 320×320) is found to be

a reasonable trade-off between the false negatives and false

positives.

We have summarized the detection results in Table 2 and
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Figure 5: Qualitative results on a sample from the USC-ISI CMFD dataset are shown. From left to right are input image;

results of BusterNet [46], FOA-GAN, SOA-GAN, and DOA-GAN; and the ground truth mask, respectively. Note that the

target region (as scaling transformation) is shown in red and the source region in green.

the localization results in Table 1. A few interesting ob-

servations: (1) DOA-GAN w/o Ladv performs better than

BusterNet in terms of all the metrics, which clearly demon-

strates promising performance for the generator in DOA-

GAN; (2) DOA-GAN works better than DOA-GAN w/o

Ladv overall in both detection and localization tasks, which

demonstrates the efficacy of the discrimination ability from

the discriminator in DOA-GAN, (3) The detection perfor-

mance is worse in DOA-GAN w/o Ldet than that in DOA-

GAN, which demonstrates the efficacy of Ldet, (4) FOA-

GAN and SOA-GAN perform worse than the DOA-GAN

in all metrics except F1 score of pristine pixels, which sug-

gests the 1st-order and the 2nd-order attentions are com-

plementary to each other to improve the performance on

the copy-move forgery detection and localization, and (5)

U-Net and NA-GAN baselines perform much worse than

DOA-GAN, SOA-GAN, and FOA-GAN, especially in lo-

calization of source mask, which demonstrates the efficacy

of affinity computation. This indirectly verifies the effec-

tiveness of our dual-order attention module. To further un-

Table 2: Detection results on the USC-ISI CMFD dataset.

Methods Precision Recall F1

BusterNet [46] 89.26 80.14 84.45

ManTra-Net [47] 68.72 85.82 76.32

U-Net [38] 82.61 66.13 73.46

NA-GAN 80.19 85.64 82.82

FOA-GAN 94.13 94.54 94.33

SOA-GAN 95.50 92.30 93.87

DOA-GAN w/o ASPP-1 95.11 93.13 94.10

DOA-GAN w/o ASPP-2 92.97 91.75 92.35

DOA-GNN w/o Ladv 95.45 93.09 94.25

DOA-GAN w/o Ldet 90.31 94.78 92.49

DOA-GAN 96.83 96.14 96.48

derstand the advantage of the DOA-GAN approach, we also

provide some visualization results in Figure 5. As we can

see, our DOA-GAN is able to generate more accurate masks

than BusterNet, our FOA-GAN, and our FOA-GAN.

4.2. Experiments on the CASIA CMFD dataset.

Unlike the USC-ISI CMFD data, the CASIA CMFD

dataset does not provide both ground-truth masks distin-

guishing source and target. It is more challenging because

some uniform background is copied and pasted to the other

background. To evaluate the proposed DOA-GAN on this

dataset, we modified our network by replacing the final con-

volution layer of our network to a convolution layer of 1

channel output to get the mask of both copy and source

parts as a single channel output. We train our model on

the USC-ISI CMFD dataset and MS COCO dataset. For

fair comparision, we do the same operation on BusterNet.

In addition, we compare with four traditional copy-move

forgery detection methods 1, i.e., a block-based CMFD with

Zernike moment features (denoted as “Block-ZM”) [39], an

adaptive segmentation based CMFD (denoted as “Adaptive-

Seg”) [36], a discrete cosine transform (DCT) coefficients

based CMFD (denoted as “DCT-Match”) [12], and a dense

field-based CMFD (denoted as “DenseField”) [8]. We eval-

uate the pixel-level performance by computing precision,

recall, and F1 score metrics for each positive image where

there is copy-move forgery, and report the final average.

For image-level detection, we predict an image to contain

forgery whenever there are more than 200 forged pixels in

the output mask. We use both positive images and their au-

thentic counterparts for image-level detection. All the im-

ages are resized to 320×320 before feeding into the models.

Table 3 shows performance comparisons with other

baselines on CASIA CMFD dataset. As we can see, our

proposed DOA-GAN performs the best in terms of all met-

rics except the precision in detection. This strongly demon-

strates the promising advantages of our proposed method.

Note that the result on BusterNet is different from the results

reported in [46], as in the original BusterNet, the manipu-

lation branch was trained on externel image manipulation

datasets, whereas, for fair comparison, we train both our

model and BusterNet only on the above-mentioned copy-

move datasets.

Figure 6 provides a visualization result that shows the

proposed DOA-GAN is able to detect more accurate masks

than DenseField and BusterNet for the copy-move forgery

manipulation.

4.3. Experiments on the CoMoFoD dataset.

We also evaluated the performance on the CoMoFoD

dataset and report results in Table 4. Again, DOA-GAN

1Implementation available on https://github.com/

MohsenZandi/Copy-Move_Forgery_Detection.
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Figure 6: Visualization examples on the CASIA CMFD dataset. From left to right are the input image; results of Adaptive-

Seg [36], DenseField [8], BusterNet [46], and our DOA-GAN; and the ground truth mask.

Figure 7: Visualization examples on the CoMoFoD dataset. From left to right are the input image; results of Adaptive-

Seg [36], DenseField [8], BusterNet [46], and our DOA-GAN; and the ground truth mask.

Table 3: The performance on the CASIA CMFD dataset.

Methods Year Precision Recall F1

Det

Block-ZM 2010 68.97 53.69 60.38

DCT-Match 2012 63.74 46.31 53.46

Adaptive-Seg 2015 93.07 25.59 40.14

DenseFiled 2015 99.51 30.61 46.82

BusterNet 2018 48.34 75.12 58.82

DOA-GAN 2019 63.39 77.00 69.53

Loc

Block-ZM 2010 10.09 3.01 3.30

DCT-Match 2012 8.80 1.90 2.40

Adaptive-Seg 2015 23.17 5.14 7.42

DenseField 2015 20.55 20.91 20.36

BusterNet 2018 42.15 30.54 33.72

DOA-GAN 2019 54.70 39.67 41.44

achieves the best performance except the precision in detec-

tion and localization. Note that different types of transfor-

mations are applied in this dataset to create copy-move ma-

nipulated images, e.g., translation, rotation, scaling, com-

bination, and distortion. Various post-processing methods,

such as JPEG compression, blurring, noise adding, and

color reduction, are also applied to all forged and original

images.

Taking each post-processing method as a specific attack,

we use this dataset to further analyze the effects of our pro-

posed DOA-GAN under different attacks.

We provide a visualization example in Figure 7. Figure 9

shows the number of correctly detected images on CoMo-

FoD dataset under different types of attacks, where an im-

age is correctly detected if its pixel-level F1 score is greater

than 30%. Figure 8 shows F1 scores for all attacks. From

these two figures, we can see that DOA-GAN is robust and

consistently performs the best under all types of attacks.

Table 4: The performance on the CoMoFoD dataset.

Methods Year Precision Recall F1

Det

Block-ZM 2010 51.72 20.87 29.74

DCT-Match 2012 50.48 29.77 37.46

Adaptive-Seg 2015 65.66 43.37 52.24

DenseField 2015 80.34 20.10 32.15

BusterNet 2018 53.20 57.41 55.22

DOA-GAN 2019 60.38 65.98 63.05

Loc

Block-ZM 2010 2.90 2.50 1.73

DCT-Match 2012 3.53 3.41 2.03

Adaptive-Seg 2015 23.02 13.27 13.46

DenseField 2015 22.23 23.63 22.60

BusterNet 2018 51.25 28.20 35.34

DOA-GAN 2019 48.42 37.84 36.92

4.4. Discussion

DOA-GAN is able to use the copy-move region atten-

tion to extract manipulation attentive features, as well as the

co-occurrence feature with patch-to-patch interdependence

taken into consideration. However, when the copy region is

just extracted from the uniform background and pasted on

the same background, it may fail. It also might fail when the

scale has been changed significantly. We provide two fail-

ure cases in Figure 10. As we see, the backgrounds for the

first example are uniform, and the scale of the copy-move

regions are very small in the second example.

5. Extension to Other Manipulation Types

Note that DOA-GAN is based on an affinity matrix cal-

culated on the same image. It is easy to extend it to an affin-

ity matrix calculated from two different images, i.e., donor

image and probe image, and the corresponding manipula-

tion types include image splicing and video copy-move.

For image splicing manipulation, we train DOA-GAN,
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