
Lecture 22: Recursive Definitions
and Structural Induction

Dr. Chengjiang Long
Computer Vision Researcher at Kitware Inc.

Adjunct Professor at SUNY at Albany.
Email: clong2@albany.edu

C. Long Lecture 22 October 26, 2018 2ICEN/ICSI210 Discrete Structures

Outline

• Recursive Definitions
• Structural Induction

C. Long Lecture 22 October 26, 2018 3ICEN/ICSI210 Discrete Structures

Outline

• Recursive Definitions
• Structural Induction

C. Long Lecture 22 October 26, 2018 4ICEN/ICSI210 Discrete Structures

Example

• The sequence is defined by the following algorithm:

1. At the first step there are two numbers: 1, 1.

2. At the next step, insert between two numbers a new

number which is the sum of two neighbors:

1, 2, 1

1, 3, 2, 3, 1

1, 4, 3, 5, 2, 5, 3, 4, 1

…

• The sum of the sequence was defined:

• recursively S(0) = 2, S(n+1) = 3S(n) − 2,

• explicitly S(n) = 3n + 1.

C. Long Lecture 22 October 26, 2018 5ICEN/ICSI210 Discrete Structures

Recursive vs. Explicit

Recursive Definition :
in some cases is the only
possible,
reflects the algorithm,
easier to read when
programed,
needs stack (risk of stack
overflow)

Explicit Definition:
faster
more reliable
hard to read

Why Recursive Definition is also called Inductive Definition?

Is the sequence in the previous example defined recursively or
explicitly?

Can the sequence be defined explicitly?

Recursion is useful to define sequences,
functions, sets, and algorithms.

C. Long Lecture 22 October 26, 2018 6ICEN/ICSI210 Discrete Structures

Recursive or Inductive Function Definition

• Basis Step: Specify the value of the function for the
base case.

• Recursive Step: Give a rule for finding the value of a
function from its values at smaller integers greater than
the base case.

C. Long Lecture 22 October 26, 2018 7ICEN/ICSI210 Discrete Structures

Inductive Definitions

• We completely understand the function f(n) = n!
right?

• n! = 1 · 2 · 3 · … · (n-1) · n, n ³ 1

Inductive
(Recursive)
Definition

But equivalently, we could define it like this:

n!=
n × (n -1)!, if n > 1
1, if n = 1
ì
í
î

Recursive Case

Base Case

C. Long Lecture 22 October 26, 2018 8ICEN/ICSI210 Discrete Structures

Inductive Definitions

• The 2nd most common example:

• Fibonacci Numbers

Recursive Case

Base Cases

ï
î

ï
í

ì

>-+-
=
=

=
1 if)2()1(
1 if 1
0 if 0

)(
nnfnf
n
n

nf

Is there a non-recursive
definition for the Fibonacci

Numbers?

f (n) =
1
5

1+ 5
2

æ

è
ç

ö

ø
÷
n

-
1- 5
2

æ

è
ç

ö

ø
÷
né

ë
ê
ê

ù

û
ú
ú

(Prove by induction.)
All linear recursions have a closed form.

Note why you need
two base cases.

C. Long Lecture 22 October 26, 2018 9ICEN/ICSI210 Discrete Structures

Recursively Defined Sets: Inductive Definitions

• Examples so far have been inductively defined functions.

• Sets can be defined inductively, too.

Recursive Case

Base Case

Give an inductive definition of T = {x: x is a positive integer divisible by 3}

3 Î S
x,y Î S ® x + y Î S
Exclusion Rule: No other numbers are in S.

How can we prove
it’s correct?

Exclusion rule:
The set contains nothing other than
those elements specified in the basic
step or generated by the recursive
step.

C. Long Lecture 22 October 26, 2018 10ICEN/ICSI210 Discrete Structures

Recursively Defined Sets: Inductive Definitions

We want to show that the definition of S:
rule 1: 3 Î S
rule 2: x, y Î S ® x + y Î S

Contains the same elements as the set: T={x: x is a
positive integer divisible by 3}

To prove S = T, show
T Í S
S Í T

Perhaps the “trickiest” aspect of this
exercise is realizing that there is
something to prove! J

C. Long Lecture 22 October 26, 2018 11ICEN/ICSI210 Discrete Structures

Recursively Defined Sets: Inductive Definitions

First, we prove T Í S.

T = {x: x is a positive integer, multiple of 3}

If x Î T, then x = 3k for some integer k. We show by induction
on |k| that 3k Î S.

Hypothesis: P(n) = 3 n belongs to S, for all positive integers n.

Base Case P(1) = 3 Î S since 3 Î S by rule 1.

Inductive Hypothesis: 3k Î S

Inductive Step: Assume 3k, Î S, show that 3(k+1), Î S.

C. Long Lecture 22 October 26, 2018 12ICEN/ICSI210 Discrete Structures

Recursively Defined Sets: Inductive Definitions

• Inductive Step:

• 3k Î S by inductive hypothesis.

• 3 Î S by rule 1.

• 3k + 3 = 3(k+1) Î S by rule 2.

C. Long Lecture 22 October 26, 2018 13ICEN/ICSI210 Discrete Structures

Recursively Defined Sets: Inductive Definitions

Next, we show that S Í T.

That is, if an number x is described by S, then it is a
positive multiple of 3.

Observe that the exclusion rule, all numbers in S are created by a finite
number of applications of rules 1 and 2. We use the number of rule
applications as our induction counter.

For example:
3 Î S by 1 application of rule 1.
9 Î S by 3 applications (rule 1 once and rule 2 twice).

C. Long Lecture 22 October 26, 2018 14ICEN/ICSI210 Discrete Structures

Recursively Defined Sets: Inductive Definitions

• Base Case (k=1): If x Î S by 1 rule application, then it
must be rule 1 and x = 3, which is clearly a multiple of 3.

Inductive Hypothesis: Assume any number described by k or fewer
applications of the rules in S is a multiple of 3

Inductive Step: Prove that any number described by (k+1) applications of the
rules is also a multiple of 3, assuming IH.

Suppose the (k+1)st rule is applied (rule 2), and it results in value
x = a + b. Then a and b are multiples of 3 by inductive hypothesis, and
thus x is a multiple of 3.

Aside --- Message here: in a proof, follow a well-defined sequence of
steps. This avoids subtle mistakes.

C. Long Lecture 22 October 26, 2018 15ICEN/ICSI210 Discrete Structures

Outline

• Recursive Definitions
• Structural Induction

C. Long Lecture 22 October 26, 2018 16ICEN/ICSI210 Discrete Structures

Recursive Definition of Structures

• In the previous lecture we showed that recursive
definitions are applicable for functions, sets and other
structures.

1. Define the “smallest” or “simplest” object (or objects) in
the set of structures.

2. Define the ways in which “larger” or “more complex”
objects in the set can be constructed out of “smaller” or
“simpler” objects in the set.

C. Long Lecture 22 October 26, 2018 17ICEN/ICSI210 Discrete Structures

Example of Structural Recursion

Full binary trees can be defined recursively as follows (from the textbook):

1. BASIS STEP: There is a full binary tree consisting of only a single node r.
2. RECURSIVE STEP: If T1 and T2 are disjoint full binary trees, there is a full binary

tree, denoted by T1∙T2, consisting of a root r together with edges connecting the root
to each of the roots of the left subtree T1 and the right subtree T2.

C. Long Lecture 22 October 26, 2018 18ICEN/ICSI210 Discrete Structures

Extended Binary Tree

• Find the difference between full and extended
binary trees.

C. Long Lecture 22 October 26, 2018 19ICEN/ICSI210 Discrete Structures

Definition of Extended Binary Trees

1. BASIS STEP: ! ∪ V is in T. The set V represents the set of single nodes
and ! represents the empty binary tree in which nodes(!) = edges(!) =
∅ and root(!) is undefined. We use nodes(), edges(), and root() to
specify sets of nodes, edges and roots of a tree.

2. RECURSIVE STEP: Let T1 and T2 be elements of T such that nodes(T1)
∩ nodes(T2) = ∅, and
r ∉ nodes(T1) ∪ nodes(T2). Then the ordered triple t = (r, T1, T2) is also in
T. Furthermore, we define
root(T) = r
nodes(T) = {r} ∪ nodes(T1) ∪ nodes(T2)
edges(T) = E ∪ edges(T1) ∪ edges(T2)
where E is the set that contains (r, root(T1)) if T1 ≠ !, (r, root(T2)) if T2 ≠
!, and nothing else.

How to change this
recursive definition so that it
becomes the definition of
full binary trees?

C. Long Lecture 22 October 26, 2018 20ICEN/ICSI210 Discrete Structures

Definition of Full Binary Trees

1. BASIS STEP: V is in T. The set V represents the set of single
nodes.

2. RECURSIVE STEP: Let T1 and T2 be elements of T such that
nodes(T1) ∩ nodes(T2) = ∅, and
r ∉ nodes(T1) ∪ nodes(T2). Then the ordered triple t = (r, T1, T2)
is also in T. Furthermore, we define
root(T) = r
nodes(T) = {r} ∪ nodes(T1) ∪ nodes(T2)
edges(T) = E ∪ edges(T1) ∪ edges(T2)
where E is the set that contains (r, root(T1)), (r, root(T2)).

C. Long Lecture 22 October 26, 2018 21ICEN/ICSI210 Discrete Structures

Importance of “Nothing Else”

• Example: The set S = {n ∈ N : n ≥ 2} is recursively
defined:

1. BASIS STEP: 2 ∈ S
2. RECURSIVE STEP: if n ∈ S, then n + 1 ∈ S
3. S contains nothing else.
• Why is this definition ambiguous without statement 3?
• Otherwise N and Z can also satisfy properties because

it is structural recursion that defines a set. Sets are not
ordered and basis step means entrance point, but does
not mean the first point.

C. Long Lecture 22 October 26, 2018 22ICEN/ICSI210 Discrete Structures

Mathematical and Structural Recursions

• As you can see from the previous example
mathematical recursion over the natural numbers is
an instance of the more general concept of structural
recursion over values of an recursively-defined sets.

• The natural numbers themselves is a recursively
defined set. Because N may be defined as:

1. 0 is an element of N.
2. If m is an element of N, then so is m+1.
3. Nothing else is an element of N.

C. Long Lecture 22 October 26, 2018 23ICEN/ICSI210 Discrete Structures

Mathematical and Structural Inductions

• We used mathematical induction to prove properties of
functions mapped onto the set of natural numbers. And
we saw that mathematical induction repeats recursive
steps.

• To prove that a property P(n) holds of every n in N, it
suffices to demonstrate the following facts:
• Show that P(0) holds.
• Assuming that P(m) holds, show that P(m+1) holds.

• Structural recursion is more universal notion and the
approach that is used to prove properties of structures
is called structural induction.

• The pattern of reasoning using structural induction
follows the recursive definition of structures.

C. Long Lecture 22 October 26, 2018 24ICEN/ICSI210 Discrete Structures

Structural Induction and Binary Trees

• Prove: If T is a full binary tree, then n(T) ≤ 2h(T)+1 – 1 where n(T) is size
of tree, h(T) is height of a tree.

Solution: Use structural induction.
• BASIS STEP: The result holds for a full binary tree consisting only of a root, n(T) =

1 and h(T) = 0. Hence, n(T) = 1 ≤ 20+1 – 1 = 1.
• INDUCTION STEP: Assume n(T1) ≤ 2h(T1)+1 – 1 and also n(T2) ≤ 2h(T2)+1 – 1

whenever T1 and T2 are full binary trees.
• n(T) = 1	+ n(T1) + n(T2) (by recursive formula of n(T), see textbook)
• ≤ 1 + (2h(T1)+1 – 1) + (2h(T2)+1	– 1) (by inductive hypothesis)
• ≤ 2∙max(2h(T1)+1 ,2h(T2)+1) – 1	
• = 2∙2max(h(T1),h(T2))+1 – 1 (max(2x , 2y)= 2max(x,y))
• = 2∙2h(T) – 1 (by recursive definition of h(T), see textbook)
• = 2h(T)+1 – 1

C. Long Lecture 22 October 26, 2018 25ICEN/ICSI210 Discrete Structures

Principle of Structural Induction

• Let R be a recursive definition.
• Let P be a statement (property) about the elements

defined by R.

• If the following hypotheses hold:
• P is True for every element b1,…,bm in the base case of the

definition R.
• For every element E constructed by the recursive definition

from some elements e1,…,en : P is True for e1,…,en ⇒ P is
true for E.

• Then we can conclude that:
• P is True for every element E defined by the recursive

definition R.

C. Long Lecture 22 October 26, 2018 26ICEN/ICSI210 Discrete Structures

Example: Set of Strings

A. Recursive definition of a set of valid strings :
• BASE CASE: b ∈ S, where b is the empty string, S is a set of valid strings.
• RECURSIVE STEP: asa, s∈ S, where a is any letter from the alphabet A (a∈ A).

B. Explicit formula for a valid string:
• anban , where n ≥ 0 is a number of letters.

• Prove that
• Recursive Definition ⇔ Explicit Definition

C. Long Lecture 22 October 26, 2018 27ICEN/ICSI210 Discrete Structures

Proof A: Recursive → Explicit

• Property P(s): “Every element s constructed recursively

is of the form anban.”

• By Structural Induction.

• Base Case: b = a0ba0 .

• Induction Step: Suppose s = a nba n .
• Structural Induction is to prove: if P(b) ∨ (∀s P(s) → P(asa)),

then ∀s P(s).

By recursive step next element asa = a(anban)a = an+1ba n+1

C. Long Lecture 22 October 26, 2018 28ICEN/ICSI210 Discrete Structures

Proof B: Explicit → Recursive

• Predicate P(n): “Every element of the form anban can
be constructed recursively.”

• By Mathematical Induction.
• Base Case: n = 0 → a0ba0 = b.
• Induction Hypothesis: Every element of the form anban can

be constructed recursively.

• Prove by mathematical induction must show: Every element
of the form an+1ban+1 can be constructed recursively.

a n+1 ba n+1 = a(anban)a = asa.

By the inductive hypothesis: anban satisfies the recursive
definition; hence by the recursive step, anban, so does an+1ba n+1.

C. Long Lecture 22 October 26, 2018 29ICEN/ICSI210 Discrete Structures

Observations on Structural Induction

• Proofs by Structural Induction
• Extends inductive proofs to discrete data structures:

strings, lists, trees, etc.
• For every recursive definition there is a corresponding

structural induction rule.
• The base case and the recursive step mirror the

recursive definition.
• Prove Base Case
• Prove Recursive Step

C. Long Lecture 22 October 26, 2018 30ICEN/ICSI210 Discrete Structures

Next class

• Topic: Recursive Algorithms
• Pre-class reading: Chap 5.4

