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Example

• The sequence is defined by the following algorithm:

1. At the first step there are two numbers: 1, 1. 

2. At the next step, insert between two numbers a new 

number which is the sum of two neighbors: 

1, 2, 1

1, 3, 2, 3, 1

1, 4, 3, 5, 2, 5, 3, 4, 1 

…

• The sum of the sequence was defined:

• recursively S(0) = 2, S(n+1) = 3S(n) − 2,

• explicitly S(n) = 3n + 1.
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Recursive vs. Explicit

Recursive Definition :
in some cases is the only 
possible,
reflects the algorithm,
easier to read when 
programed,
needs stack (risk of stack 
overflow)

Explicit Definition:
faster
more reliable
hard to read

Why Recursive Definition is also called Inductive Definition?

Is the sequence in the previous example defined recursively or 
explicitly?

Can the sequence be defined explicitly?

Recursion is useful to define sequences, 
functions, sets, and algorithms. 
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Recursive or Inductive Function Definition 

• Basis Step: Specify the value of the function for the 
base case.

• Recursive Step: Give a rule for finding the value of a 
function from its values at smaller integers greater than 
the base case.
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Inductive Definitions

• We completely understand the function f(n) = n!   
right?

• n! = 1 · 2 · 3 · … · (n-1) · n, n ³ 1

Inductive 
(Recursive) 
Definition

But equivalently, we could define it like this:

 

n!=
n × (n -1)!,  if n > 1
1,                 if n = 1
ì 
í 
î 

Recursive Case

Base Case
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Inductive Definitions

• The 2nd most common example:

• Fibonacci Numbers

Recursive Case

Base Cases
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Is there a non-recursive 
definition for the Fibonacci 

Numbers?
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(Prove by induction.)
All linear recursions have a closed form.

Note why you need
two base cases.
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Recursively Defined Sets: Inductive Definitions

• Examples so far have been inductively defined functions.

• Sets can be defined inductively, too.

Recursive Case 

Base Case

Give an inductive definition of T = {x: x is a positive integer divisible by  3}

3 Î S
x,y Î S ® x + y Î S 
Exclusion Rule: No other numbers are in S.

How can we  prove 
it’s correct?

Exclusion rule:
The set contains nothing other than
those elements specified in the basic
step or generated by the recursive
step.
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Recursively Defined Sets: Inductive Definitions

We want to show that the  definition of S:
rule 1: 3 Î S
rule 2: x, y Î S ® x + y Î S 

Contains the same elements as the set:   T={x: x is a 
positive integer divisible by  3}

To prove S = T, show
T Í S
S Í T

Perhaps the “trickiest” aspect of this 
exercise is realizing that there is
something to prove! J
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Recursively Defined Sets: Inductive Definitions

First, we prove T Í S.

T = {x: x is a positive integer, multiple of 3} 

If x Î T, then x = 3k for some integer k.  We show by induction 
on |k| that 3k Î S. 

Hypothesis: P(n) = 3 n belongs to S, for all positive integers n.

Base Case P(1) = 3 Î S since 3 Î S by rule 1.

Inductive Hypothesis:  3k Î S 

Inductive Step: Assume 3k, Î S, show that 3(k+1), Î S.
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Recursively Defined Sets: Inductive Definitions

• Inductive Step:

• 3k Î S by inductive hypothesis.

• 3 Î S by rule 1.

• 3k + 3 = 3(k+1) Î S by rule 2.



C. Long Lecture 22 October 26, 2018 13ICEN/ICSI210 Discrete Structures

Recursively Defined Sets: Inductive Definitions

Next, we show that S Í T.

That is, if an number x is described by S, then it is a 
positive  multiple of 3.

Observe that the exclusion rule, all numbers in S are created by a finite 
number of applications of rules 1 and 2. We use the number of rule 
applications as our induction counter.

For example: 
3 Î S by 1 application of rule 1.
9 Î S by 3 applications (rule 1 once and rule 2 twice).
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Recursively Defined Sets: Inductive Definitions

• Base Case (k=1): If x Î S by 1 rule application, then it 
must be rule 1 and x = 3, which is clearly a multiple of 3.

Inductive Hypothesis: Assume any number described by k or fewer 
applications of the rules in S is a multiple of 3

Inductive Step:  Prove  that any number described by (k+1) applications of the 
rules is also a multiple of 3, assuming IH. 

Suppose the (k+1)st rule is applied (rule 2), and it results in value 
x = a + b.  Then a and b are multiples of 3 by inductive hypothesis, and 
thus x is a multiple of 3.

Aside --- Message here: in a proof, follow a well-defined sequence of
steps. This avoids subtle mistakes.
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Recursive Definition of Structures

• In the previous lecture we showed that recursive 
definitions are applicable for functions, sets and other 
structures.

1. Define the “smallest” or “simplest” object (or objects) in 
the set of structures.

2. Define the ways in which “larger” or “more complex” 
objects in the set can be constructed out of “smaller” or 
“simpler” objects in the set.
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Example of Structural Recursion

Full binary trees can be defined recursively as follows (from the textbook):

1. BASIS STEP: There is a full binary tree consisting of only a single node r.
2. RECURSIVE STEP: If T1 and T2 are disjoint full binary trees, there is a full binary 

tree, denoted by T1∙T2, consisting of a root r together with edges connecting the root 
to each of the roots of the left subtree T1 and the right subtree T2. 
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Extended Binary Tree

• Find the difference between full and extended 
binary trees.
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Definition of Extended Binary Trees

1. BASIS STEP: ! ∪ V is in T. The set V represents the set of single nodes 
and ! represents the empty binary tree in which nodes(!) = edges(!) = 
∅ and root(!) is undefined. We use nodes(), edges(), and root() to 
specify sets of nodes, edges and roots of a tree.

2. RECURSIVE STEP: Let T1 and T2 be elements of T such that nodes(T1) 
∩ nodes(T2) = ∅, and 
r ∉ nodes(T1) ∪ nodes(T2). Then the ordered triple t = (r, T1, T2) is also in 
T. Furthermore, we define 
root(T) = r
nodes(T) = {r} ∪ nodes(T1) ∪ nodes(T2) 
edges(T) = E ∪ edges(T1) ∪ edges(T2) 
where E is the set that contains (r, root(T1)) if T1 ≠ !, (r, root(T2)) if T2 ≠ 
!, and nothing else.

How to change this 
recursive definition so that it 
becomes the definition of 
full binary trees?
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Definition of Full Binary Trees

1. BASIS STEP: V is in T. The set V represents the set of single 
nodes. 

2. RECURSIVE STEP: Let T1 and T2 be elements of T such that 
nodes(T1) ∩ nodes(T2) = ∅, and 
r ∉ nodes(T1) ∪ nodes(T2). Then the ordered triple t = (r, T1, T2) 
is also in T. Furthermore, we define 
root(T) = r
nodes(T) = {r} ∪ nodes(T1) ∪ nodes(T2) 
edges(T) = E ∪ edges(T1) ∪ edges(T2) 
where E is the set that contains (r, root(T1)), (r, root(T2)).
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Importance of “Nothing Else”

• Example: The set S = {n ∈ N : n ≥ 2} is recursively 
defined: 

1. BASIS STEP: 2 ∈ S
2. RECURSIVE STEP: if n ∈ S, then n + 1 ∈ S
3. S contains nothing else. 
• Why is this definition ambiguous without statement 3?
• Otherwise N and Z can also satisfy properties because 

it is structural recursion that defines a set. Sets are not 
ordered and basis step means entrance point, but does 
not mean the first point.
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Mathematical and Structural Recursions

• As you can see from the previous example 
mathematical recursion over the natural numbers is 
an instance of the more general concept of structural 
recursion over values of an recursively-defined sets.

• The natural numbers themselves is a recursively 
defined set. Because N may be defined as:

1. 0 is an element of N.
2. If m is an element of N, then so is m+1.
3. Nothing else is an element of N.
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Mathematical and Structural Inductions

• We used mathematical induction to prove properties of 
functions mapped onto the set of natural numbers. And 
we saw that mathematical induction repeats recursive 
steps.

• To prove that a property P(n) holds of every n in N, it 
suffices to demonstrate the following facts:
• Show that P(0) holds.
• Assuming that P(m) holds, show that P(m+1) holds.

• Structural recursion is more universal notion and the 
approach that is used to prove properties of structures 
is called structural induction. 

• The pattern of reasoning using structural induction 
follows the recursive definition of structures. 
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Structural Induction and Binary Trees

• Prove: If T is a full binary tree, then   n(T) ≤ 2h(T)+1 – 1 where n(T) is size 
of tree, h(T) is height of a tree.

Solution: Use structural induction.
• BASIS  STEP: The result holds for a full binary tree consisting only of a root, n(T) = 

1 and h(T) = 0.  Hence, n(T) = 1 ≤ 20+1 – 1 = 1.
• INDUCTION STEP:  Assume n(T1) ≤ 2h(T1)+1 – 1 and also n(T2) ≤ 2h(T2)+1  – 1

whenever T1 and T2 are full binary trees.
• n(T)   =  1	+ n(T1) + n(T2)         (by recursive formula of n(T), see textbook)
• ≤ 1 + (2h(T1)+1 – 1) + (2h(T2)+1	– 1)  (by inductive hypothesis)
• ≤ 2∙max(2h(T1)+1 ,2h(T2)+1 ) – 1	
• = 2∙2max(h(T1),h(T2))+1 – 1 (max(2x , 2y)= 2max(x,y) )
• = 2∙2h(T) – 1 (by recursive definition of h(T), see textbook)
• = 2h(T)+1 – 1
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Principle of Structural Induction 

• Let R be a recursive definition. 
• Let P be a statement (property) about the elements 

defined by R. 

• If the following hypotheses hold: 
• P is True for every element b1,…,bm in the base case of the 

definition R. 
• For every element E constructed by the recursive definition 

from some elements e1,…,en : P is True for e1,…,en ⇒ P is 
true for E. 

• Then we can conclude that: 
• P is True for every element E defined by the recursive 

definition R.
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Example: Set of Strings

A. Recursive definition of a set of valid strings :
• BASE CASE: b ∈ S, where b is the empty string, S is a set of valid strings.
• RECURSIVE STEP: asa, s∈ S, where a is any letter from the alphabet A (a∈ A). 

B. Explicit formula for a valid string: 
• anban , where n ≥ 0 is a number of letters.

• Prove that
• Recursive Definition ⇔ Explicit Definition 
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Proof A: Recursive → Explicit

• Property P(s): “Every element s constructed recursively 

is of the form anban.”

• By Structural Induction. 

• Base Case: b = a0ba0 . 

• Induction Step: Suppose s = a nba n .
• Structural Induction is to prove: if P(b) ∨ (∀s P(s) → P(asa)), 

then ∀s P(s).

By recursive step next element asa = a(anban)a = an+1ba n+1
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Proof B: Explicit → Recursive

• Predicate P(n): “Every element of the form anban can 
be constructed recursively.”

• By Mathematical Induction. 
• Base Case: n = 0 → a0ba0 = b.
• Induction Hypothesis: Every element of the form anban can 

be constructed recursively. 

• Prove by mathematical induction must show: Every element 
of the form an+1ban+1 can be constructed recursively.  

a n+1 ba n+1 = a( anban )a = asa. 

By the inductive hypothesis: anban satisfies the recursive 
definition; hence by the recursive step, anban, so does an+1ba n+1.
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Observations on Structural Induction 

• Proofs by Structural Induction 
• Extends inductive proofs to discrete data structures: 

strings, lists, trees, etc. 
• For every recursive definition there is a corresponding 

structural induction rule. 
• The base case and the recursive step mirror the 

recursive definition. 
• Prove Base Case
• Prove Recursive Step 
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Next class

• Topic: Recursive Algorithms
• Pre-class reading: Chap 5.4


